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1. Introduction

Multi-drug resistant (MDR) infections pose a significant 
challenge in healthcare and can spread rapidly in hospital 
settings.1,2 The rise of carbapenem-resistant strains is 
concerning.3 To address this issue, a variety of strategies are 
available. Research has shown that targeted combinations 
of treatments can effectively overcome resistance and 
improve therapeutic outcomes. In addition, clinical trials are 
increasingly exploring combinations of antibiotics with other 
drugs and innovative antibacterial agents in bi-therapy and tri-
therapy approaches, with the goal of improving interventions 
against MDR infections.4

Beta-lactams and beta-lactamase inhibitors have 
been utilized in combination for many years to treat 
infections.5,6 Beta-lactams specifically target the final stages 
of peptidoglycan synthesis, particularly the transpeptidation 
step. Peptidoglycan is an essential component of the cell wall 

in most prokaryotes and is not present in eukaryotic cells. 
Beta-lactam antibiotics are also generally considered safe for 
use during pregnancy and are not associated with major fetal 
harm.7 Given these factors, beta-lactam antibiotics, when used 
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in conjunction with other compounds, are a reasonable option 
in treatment regimens for MDR infections.8,9

Due to the urgent need for effective treatments against 
MDR isolates, researchers have explored combinations of 
antibiotics with other drugs or compounds. Numerous studies 
have demonstrated that certain combinations can reverse 
specific resistance traits.10 To develop effective therapeutic 
strategies for infections caused by MDR isolates, it is essential 
to implement sophisticated approaches that prevent antibiotic 
inactivation, including strategies that reduce antibiotic 
degradation.11

Beta-lactam/beta-lactamase inhibitor combinations can 
provide synergistic activity by preventing the degradation 
of beta-lactam antibiotics by beta-lactamases. However, 
clinical effectiveness can be compromised by the emergence 
of inhibitor-resistant beta-lactamases.12 For example, cilastatin 
sodium (PubChem CID 23663403), a sodium thioether salt, 
inhibits renal dehydropeptidase I, the enzyme responsible for 
imipenem degradation. Imipenem is therefore co-administered 
with cilastatin to reduce renal metabolism of imipenem, and 
relebactam can be added as a beta-lactamase inhibitor to 
improve activity against selected beta-lactamase-producing 
organisms.13,14 Some studies have also explored broader 
applications of beta-lactamase inhibitors. For instance, 
clavulanic acid, a beta-lactamase inhibitor used alongside 
amoxicillin, has been investigated for the treatment of 
Helicobacter pylori infection.15

Beta-lactam antibiotics are effective; however, 
microorganisms have developed resistance mechanisms 
against them. Most MDR isolates associated with hospital-
acquired infections are resistant to beta-lactam antibiotics, 
including some beta-lactam/beta-lactamase inhibitor 
combinations. Despite this, combining these antibiotics 
with other drugs or compounds can yield synergistic effects. 
Masoudi et al.16 reported that certain nanoantibiotics, such 
as titanium dioxide and zinc oxide nanoparticles, when used 
in conjunction with amoxicillin-clavulanic acid, can inhibit 
biofilm formation by MDR Acinetobacter baumannii and 
Escherichia coli.

Natural compounds have been used for many years to treat 
a variety of diseases. Today, numerous natural compounds 
with antibacterial, antiviral, and antifungal properties have 
been identified.10 Certain environmental organisms are 
significant sources of compounds, particularly secondary 
metabolites with antibacterial activity.17 As with other 
medications, it is important to explore the effects of combining 
natural extracts with antibiotics.18-20 These combinations may 
be synergistic, antagonistic, or indifferent. In this context, 
we are particularly interested in investigating the synergistic 
effects of combining natural compounds with beta-lactam 
antibiotics. Streptomyces species are a well-known source 

of antibiotics and related compounds, including beta-lactams 
(e.g., cephalosporins, carbapenems, and monobactams) and 
beta-lactamase inhibitors such as clavulanic acid and olivanic 
acid.17,21

Research investigating combinations of antibiotics and 
natural compounds has reported promising results against 
bacterial species linked to periodontal disease. An in vitro 
study by Saquib et al.22 examined the combined effects 
of three plant extracts and four antibiotics against four 
bacterial species associated with periodontal disease. The 
most significant synergistic effect was observed for Punica 
granatum combined with amoxicillin against Aggregatibacter 
actinomycetemcomitans, a Gram-negative facultative 
anaerobe commonly found in the oral microbiota.

The present review examines crystal structures of beta-
lactam/beta-lactamase inhibitor combinations available in the 
Protein Data Bank (PDB; https://www.rcsb.org). The review 
is organized into several sections: An overview of beta-
lactam/beta-lactamase inhibitor combinations; a summary 
of European Committee on Antimicrobial Susceptibility 
Testing (EUCAST; https://www.eucast.org/) and clinical 
and laboratory standards institute (CLSI; https://clsi.org/) 
guidance relevant to laboratory interpretation; and a detailed 
analysis of available co-crystal structures involving beta-
lactams and their binding partners, including approved 
therapies and newer compounds under investigation.

2. Beta-lactam/beta-lactamase inhibitor 
combinations

Clinical laboratories depend on standardized guidelines to 
report resistance phenotypes of bacterial isolates. In this 
context, we highlight the most recent EUCAST and CLSI 
recommendations, including expert rules relevant to beta-
lactam/beta-lactamase inhibitor combinations.

2.1. EUCAST expert rules

Antibiotics that inhibit bacterial cell wall synthesis, 
particularly peptidoglycan synthesis, have a high therapeutic 
index because peptidoglycan is not present in eukaryotic cells.

Beta-lactam/beta-lactamase inhibitor combinations 
are included in EUCAST Version 15.0  (2025) (Table  1). 
Penicillin-beta-lactamase inhibitor combinations are active 
against many Gram-negative bacteria and some anaerobic 
Gram-positive species. Cephalosporin-beta-lactamase 
inhibitor combinations are active against Gram-negative 
bacilli and Haemophilus influenzae. Monobactam-beta-
lactamase inhibitor combinations are used primarily against 
Enterobacterales. EUCAST Version 15.0  (2025) includes 
four penicillin-beta-lactamase inhibitor combinations, three 
cephalosporin-beta-lactamase inhibitor combinations, two 
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Table 1. EUCAST recommendations for beta‑lactam/beta‑lactamase inhibitor combinations (Version 15.0, 2025)
Antibiotic class/combination Enterobacterales, non‑fermenters, 

and other gram‑negative bacilli
Cocobacillary Gram‑negative Anaerobic bacteria

Penicillins
Ampicillin‑sulbactam Enterobacterales Haemophilus influenzac, Moraxella 

catarrhalisf
Prevotella spp.a,b, Fusobacterium necrophorum, 
Clostridium perfringens, Cutibacterium acnesa,b

Amoxicillin‑clavulanic acid Enterobacterales, Burkholderia 
pseudomallei

Kingella kingaea, Haemophilus 
influenzae, Moraxella catarrhalis

Bacteroides spp.d, Prevotella spp.a,b, 
Fusobacterium necrophorum, Clostridium 
perfringens, Cutibacterium acnesa,b

Piperacillin‑tazobactam Enterobacterales, Pseudomonas 
spp., Vibrio spp., Achromobacter 
xylosoxidans

Haemophilus influenzae Bacteroides spp.d, Prevotella spp.a,b, 
Fusobacterium necrophorum, Clostridium 
perfringens, Cutibacterium acnes a,b

Ticarcillin‑tazobactam Enterobacterales, Pseudomonas spp. ‑ ‑
Cephalosporins

Cefepime‑enmetazobactam Enterobacterales, Pseudomonas spp.e Haemophilus influenzae e ‑
Ceftazidime‑avibactam Enterobacterales, Pseudomonas 

aeruginosa
‑ ‑

Ceftolozane‑tazobactam Enterobacterales, Pseudomonas 
aeruginosa

Haemophilus influenza ‑

Carbapenems
Imipenem‑relebactam Enterobacterales, Pseudomonas 

aeruginosa, Acinetobacter spp.e
Haemophilus influenzaee ‑

Meropenem‑vaborbactam Enterobacterales, Pseudomonas 
aeruginosa, Acinetobacter spp.e

Haemophilus influenzaee ‑

Monobactams
Aztreonam‑avibactam Enterobacterales

Notes: aZone diameter breakpoints only; bOnly isolates resistant to benzylpenicillin should be tested for susceptibility to individual agents; cNo zone diameter breakpoints, 
as susceptibility can be inferred from intravenous amocicillin‑clavulanic acid; dBreakpoints for Bacteroides spp. are also valid for Parabacteroides spp. and Phocaeicola 
dorei/vulgates; eThe addition of a beta‑lactamase inhibitor does not add clinical benefits; fSusceptibility can be inferred from amoxicillin‑clavulanic acid.

carbapenem-beta-lactamase inhibitor combinations, and one 
monobactam-beta-lactamase inhibitor combination.

2.2. The CLSI expert rules

The CLSI M100 performance standards for antimicrobial 
susceptibility testing are an important standard used in clinical 
laboratories. Each year, CLSI provides updated guidance and 
new additions needed for interpreting antibiogram results 
obtained by disk diffusion or dilution methods.

Several  beta- lactam/beta- lactamase inhibi tor 
combinations were added relatively recently to CLSI 
standards (Table  2). In 2024, CLSI included sulbactam-
durlobactam. The European Medicines Agency issued a 
decision (EMEA-002807-PIP01-20-M01; 2022) related 
to the pediatric investigation plan for durlobactam/
sulbactam (https://www.ema.europa.eu/en/medicines/
human/paediatric-investigation-plans/emea-002807-pip01-
20-m01). Sulbactam-durlobactam is a beta-lactam/beta-
lactamase inhibitor combination with a narrow application, 
targeting the Acinetobacter baumannii-calcoaceticus 
complex. Its main therapeutic indication is hospital-acquired 
bacterial pneumonia and ventilator-associated bacterial 
pneumonia in adults.23

2.3. Bacterial beta-lactamases

Beta-lactamases (E.C. 3.5.2.6) are enzymes that hydrolyze 
beta-lactam antibiotics and may show different specificities 
for penicillins, cephalosporins, and carbapenems. Beta-
lactamases are commonly classified by the Ambler molecular 
classification (classes A-D); in addition, standardized 
residue-numbering schemes (e.g., Ambler/ABL numbering) 
are used to compare homologous enzymes.24-26 The Bush-
Jacoby-Medeiros functional classification offers an additional 
approach based on substrate and inhibitor profiles (Table 3).27

One notable group is class B beta-lactamases, also known 
as metallo-beta-lactamases (MBLs), which require zinc for 
catalytic activity. Many beta-lactamases are produced by 
human pathogens, and these enzymes continue to evolve, 
making antibiotic-resistant infections increasingly challenging 
to treat. As a result, functional groupings are updated as new 
enzymes emerge and as additional information becomes 
available on hydrolysis spectra and inhibitor susceptibility.28

2.4. Beta-lactamase inhibitors

Beta-lactamase inhibitors, when used in combination with 
beta-lactam antibiotics, can improve activity against beta-
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Table 2. Beta‑lactam/beta‑lactamase inhibitor combinations according to CLSI standards
Beta‑lactam/beta‑lactamase 
inhibitor combination

CLSI breakpoint additions since 2010 Bacterial species

Ceftazidime‑avibactam January 2018 (M100, 28th ed..)a,b Enterobacterales, Pseudomonas spp.
Ceftolozane‑tazobactam January 2016 (M100‑S26)b, January 2018 (M100, 28th ed..)a, 

March 2021 (M100‑Ed31)c
Enterobacterales, Haemophilus influenzae and Haemophilus 
parainfluenzae, Streptococcus spp. (Viridans group)

Imipenem‑relebactam March 2021 (M100–Ed31)a,b Enterobacterales, Pseudomonas spp., anaerobes
Meropenem‑vaborbactam January 2019 (M100, 29th ed..)a,b Enterobacterales
Sulbactam‑durlobactam February 2024 (M100–34th ed..)a,b Acinetobacter spp.
Piperacillin‑tazobactam January 2017 (M100, 27th ed..)b January 2018 (M100, 28th ed..)b Anaerobes
Notes: aDisk diffusion breakpoints; bMinimal inhibitory concentration breakpoints; cMinimal inhibitory concentration for Haemophilus influenzae and Haemophilus 
parainfluenzae.

Table 3. Characteristics of beta‑lactamases according to Ambler 
and Bush‑Jacoby‑Medeiros classifications
Beta‑lactamases Ambler 

class
Functional 
classification

Active 
site

Broad‑spectrum, inhibitor‑resistant, 
extended‑spectrum beta‑lactamases and 
serine carbapenemases

Class A Group 2 Serine

Metallo‑beta‑lactamases Class B Group 3 Zn2+

Cephalosporinases Class C Group 1 Serine
Broad‑spectrum, inhibitor‑resistant, 
extended‑spectrum beta‑lactamases and 
serine carbapenemases

Class D Group 2 Serine

Note: Ambler classes are assigned according to the Ambler molecular 
classification,24,25 and functional classifications follow Bush‑Jacoby‑Medeiros.27,28

lactamase-producing bacteria. Table  4 summarizes key 
characteristics of beta-lactamase inhibitors approved for 
clinical use. Notably, six of the seven approved beta-lactamase 
inhibitors contain sulfur in their chemical structure.

Clavulanic acid is a conjugate acid of clavulanate produced 
by fermentation of Streptomyces clavuligerus.29 It has weak 
antibacterial activity alone and is used in combination with 
penicillins such as amoxicillin and ticarcillin. Sulbactam, 
tazobactam, and enmetazobactam are penicillanic acid 
sulfones.

Sulbactam is a beta-lactamase inhibitor and can also bind 
penicillin-binding proteins (PBPs) in Gram-positive and 
Gram-negative species.30 Durlobactam is a diazabicyclooctane 
beta-lactamase inhibitor (PubChem CID 89851852) 
administered in combination with sulbactam (food and drug 
administration [FDA] approval in 2023). This inhibitor 
targets serine beta-lactamases (SBLs; class A, C, and D) 
and is indicated for hospital-acquired bacterial pneumonia 
and ventilator-associated bacterial pneumonia caused by 
susceptible isolates of the A. baumannii-calcoaceticus 
complex.31

Tazobactam is a beta-lactamase inhibitor with activity against 
the OHIO-1, SHV-1, and TEM groups of beta-lactamases.32 It was 
approved by the FDA in 1994 in combination with piperacillin 
for infections caused by Gram-positive and Gram-negative 

species, including anaerobes. Ceftolozane-tazobactam was 
initially approved in 2014, and its indication was expanded 
in 2019 to include hospital-acquired bacterial pneumonia and 
ventilator-associated pneumonia with Gram-negative susceptible 
isolates. In combination with metronidazole, it can be used for 
complicated intra-abdominal infections.33

Avibactam is a member of the class of azabicycloalkanes 
approved by the FDA in 2015 in combination with ceftazidime 
for the treatment of complicated urinary infections (including 
pyelonephritis) caused by susceptible microorganisms, including 
E. coli, Klebsiella pneumoniae, Citrobacter koseri, Enterobacter 
aerogenes, Enterobacter cloacae, Citrobacter freundii, Proteus 
spp., and Pseudomonas aeruginosa. It can also be administered 
with metronidazole for the treatment of complicated intra-
abdominal infections caused by susceptible microorganisms, 
including E. coli, K. pneumoniae, Proteus mirabilis, Providencia 
stuartii, E. cloacae, Klebsiella oxytoca, and P. aeruginosa.34,35

Relebactam is a derivative of diazabicyclooctane, 
approved by the FDA in 2019 in combination with imipenem 
and cilastatin. It inhibits Class A and Class C SBLs by forming 
a covalent acyl-enzyme intermediate with the active-site 
serine residue.36

Vaborbactam is a cyclic boronic acid pharmacophore 
derivative approved by the FDA in 2017 in combination with 
meropenem for the treatment of complicated urinary tract 
infections (including pyelonephritis) caused by susceptible 
microorganisms, including E. coli, K. pneumoniae, and 
E. cloacae species complex.37 A triple-combination strategy 
(e.g., meropenem-vaborbactam-aztreonam) has been proposed 
for selected resistant phenotypes, including K. pneumoniae 
isolates resistant to ceftazidim-avibactam.38

Enmetazobactam is a penicillanic acid sulfone derivative 
that was approved by the FDA on February 23, 2024, in 
combination with cefepime for the treatment of complicated 
urinary tract infections.39

Efforts to address inhibitor-resistant infections have 
prompted extensive research focused on developing new 
beta-lactamase inhibitors. Table  5 summarizes several 
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Table 4. Characteristics of clinically approved beta‑lactamase inhibitors
Beta‑lactamase inhibitor PubChem CID Molecular formula Combinations FDA approval date (brand)

Clavulanic acid 5280980 C8H9NO5 Amoxicillin, ticarcillin July 22, 1985 (Augmentin); April 1, 1985 (Timentin)
Sulbactam 23663973 C8H10NNaO5S Ampicillin, durlobactam December 31, 1986 (Unasyn); May 23, 2023 (Xacduro) 
Tazobactam 123630 C10H12N4O5S Piperacillin, ticarcillin, ceftolozane October 22, 1993 (Zosyn); December 19, 2014 (Zerbaxa)
Avibactam 9835049 C7H11N3O6S Ceftazidime, aztreonam February 25, 2015 (Avyca); February 7, 2025 (Emblaveo)
Relebactam 44129647 C12H20N4O6S Imipenem July 16, 2019 (Recarbrio)
Vaborbactam 56649692 C12H16BNO5S Meropenem August 29, 2017 (Vabomere)
Enmetazobactam 23653540 C11H14N4O5S Cefepime February 22, 2024 (Exblifep)

Table 5. New beta‑lactamase inhibitors showing experimental activity
Beta‑lactamase inhibitor PubChem CID Molecular structure PDB IDs References

Taniborbactam (VNRX‑5133) 76902493 6SP6, 6SP7 40,41

Xeruborbactam (QPX7728) 140830474 − 41,42

Triazole‑based inhibitors (CP35, CP56, CP57) − 8B1W 43

8B1Z

8B20

(Cont’d...)
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Table 5. (Continued)
Beta‑lactamase inhibitor PubChem CID Molecular structure PDB IDs References

Nacubactam 73386748 9IO6, 9H18 44‑47

Zidebactam (WCK 5107) 77846445 9IO7, 6T5Y 46,48-50,51

ANT3310, ANT90, ANT330, ANT431 (diazabicyclooctane 
derivates)

− 6ZXI 52,53

5MXQ

5MXR

6HF5

2‑triazolylthioacetamides − 6KW1 54

ETX2514 137349620 5VFD 55
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investigational compounds with activity against SBLs and/
or MBLs. X-ray structures of these inhibitors co-crystallized 
with beta-lactamases are discussed in the following section.

Taniborbactam is a small molecule and a cyclic boronate 
derivative currently under investigation in Phase III clinical 
trials. When combined with cefepime, it exhibits activity 
comparable to aztreonam-avibactam against SBLs and MBLs.56

Xeruborbactam is a small molecule and a cyclic boronate 
derivative currently under investigation. It is active against 
selected SBLs and MBLs.42 When combined with meropenem, 
xeruborbactam shows activity against some imipenemase-
producing Enterobacterales; however, meropenem alone is 
ineffective against imipenemase-producing P. aeruginosa.41

Nacubactam is a derivative of diazabicyclooctane and 
serves as an inhibitor of SBLs. It is being investigated 
for complicated urinary tract infections (ClinicalTrials.
gov identifier: NCT03174795; EudraCT: 2021-001396-
16). Misawa et al.45 reported that nacubactam combined 
with imipenem and certain beta-lactams (e.g., cefazolin, 
cefotiam, cefoxitin, or cefuroxime) was effective against 
Mycobacterium abscessus.

Zidebactam is a derivative of diazabicyclooctane that has 
a dual mechanism: It inhibits SBLs and binds to PBP2.46,48 
It is being investigated in combination with cefepime 
for infections caused by Gram-negative beta-lactamase-
producing organisms.49,50

3. Beta-lactamases catalytic mechanisms

Crystallographic studies can elucidate molecular mechanisms 
underlying catalysis.

A complex structure of AmpC beta-lactamase with a 
series of acylglycine boronic acids provides insights into 
inhibitor affinity for SBLs. Caselli et al.57 demonstrate that 
the R1 side chains of beta-lactams can contribute to affinity 
for beta-lactamases (PDB ID: 1FSY).

Recent studies highlight the pivotal role of Ser130 in 
the active site of class A SBLs. X-ray crystal structures of 
SHV-like beta-lactamases (PDB IDs: 1TDL, 1TDG) indicate 
that Ser130 is crucial for interactions with beta-lactamase 
inhibitors such as clavulanic acid and tazobactam.58 Site-
directed mutagenesis has provided valuable insights into 
inhibitor-resistant beta-lactamases, revealing that certain 
residues affect acylation rates for specific substrates. For 
instance, a CTX-M-14 variant (K234R) from E. coli showed 
that substitution of Lys234 with arginine decreases the 
acylation rate of cefotaxime. In addition, the conformational 
change associated with residue 234 reduces acylation of 
clavulanic acid (PDB ID: 7K2X).59 The K234R substitution 
in SVH-1 beta-lactamase can be addressed by derivatives 

such as SA2-13 ((3R)-4-[(4-carboxybutanoyl)oxy]-N-(1E)-
3-sulfino-D-valine) (PDB ID: 4MBK).60

Mutations in the active site of beta-lactamases can affect 
enzyme stability. However, mutations located outside the 
active site can also stabilize mutated enzymes. For instance, 
the M182T mutation in TEM-64 beta-lactamase (PDB ID: 
1JWZ) illustrates this effect.61

4. Crystal structures of beta-lactams and 
inhibitor-resistant beta-lactamases

A search of the PDB identified numerous beta-lactamase 
structures, including complexes co-crystallized with 
inhibitors, as well as enzymes involved in beta-lactam 
antibiotic biosynthesis. Many MDR isolates carry inhibitor-
resistant beta-lactamases, which can reduce the effectiveness 
of beta-lactam/beta-lactamase inhibitor combinations. 
Structural analysis of inhibitor-resistant beta-lactamases can 
clarify the molecular basis of resistance.

Using the advanced search query “inhibitor-resistant” 
AND “beta-lactamase,” 124 structures were retrieved 
from the PBD database on August 11, 2025. After manual 
curation, 35 entries corresponded to beta-lactamase 
structures co-crystallized with inhibitors. In addition, five 
entries corresponded to PBPs co-crystallized with inhibitors. 
Therefore, we included 35 beta-lactamase structures and five 
PBP structures in the present analysis. Sequence analysis and 
multiple alignment can provide additional insights relevant 
to inhibitor-resistant beta-lactamases. The effectiveness of 
beta-lactamase inhibitors extends to both Gram-negative and 
Gram-positive bacteria species.

4.1. Beta-lactamase inhibitors effective against beta-
lactamases from Gram-negative bacteria

Beta-lactamases can be broadly grouped by active-site 
chemistry into SBLs and MBLs.

4.1.1. SBLs with beta-lactamase inhibitors crystal structures

Many inhibitor-resistant beta-lactamases are variants of 
broad-spectrum enzymes.62 One of the most studied SBLs is 
the TEM-1 plasmid-encoded class A beta-lactamase, which 
belongs to the transpeptidase superfamily (UniProt/Swiss-
Prot: P14677). The name “TEM” originates from the patient 
(Temoniera) from whom it was first isolated.63

The crystal structure of TEM-76 beta-lactamase (PDB 
ID: 1YT4) revealed a water molecule (Wat1023) in the active 
site that replaces the side-chain hydroxyl group of Ser130. 
A similar water molecule that facilitates clavulanate cross-
linking has also been observed in other TEM beta-lactamases, 
including TEM-32 and TEM-84.64
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Wang et al.61 proposed that inhibitors structurally similar 
to substrates are less likely to select resistance mutations. To 
test this hypothesis, they examined a series of analogs against 
the TEM-1 class A beta-lactamase. X-ray crystallography 
and kinetic experiments showed that some boronic analogs 
mimic the transition states of acylation and deacylation 
(PDB IDs: 1NYY, 1NXY, and 1JWZ) (Figure 1).65 The 3D 
structure of TEM-64 (PDB ID: 1JWZ) was downloaded 
from the PDB (https://www.rcsb.org/structure). Interactions 
were visualized using BIOVIA Discovery Studio Modeling 
Environment (Release 2017; Dassault Systèmes, USA; http://
accelrys.com).

CTX-M is a class A beta-lactamase that was first identified 
in a cefotaxime-resistant E. coli isolated from an ear sample 
of a newborn.66 Unlike the plasmidic CTX-M, the SHV-like 
beta-lactamase (sulphydryl variable) likely originated from 
a chromosomal penicillinase found in K. pneumoniae.67 

Studies by Winkler et al.68 and Soeung et al.59 showed that the 
arginine residue interacts with clavulanic acid in the class A 
beta-lactamases SHV from K. pneumoniae and CTX-M from 
E. coli. The structure of the mutated SHV-1 K234R (PDB IDs: 
4FCF and 7K2W) indicates that two specific residues, Arg234 
and the movement of Ser130, are responsible for resistance to 
clavulanate. Furthermore, Soeung et al.59 suggest a distinction 
between penicillins and cephalosporins, recommending that 
coupling clavulanic acid with cephalosporins should be 
prioritized to reduce the development of inhibitor resistance 
(PDB IDs: 7K2Y and 7K2W). The importance of Ser130 has 
led to the development of new inhibitors such as SA-13, which 

are effective against SHV mutants from K. pneumoniae (PDB 
IDs: 3V50, 3V5M) (Figure 2).69

Combination (“tri-therapy”) strategies are used clinically, 
and structural studies can help clarify effective combinations. 
The crystal structure of serine-class A beta-lactamase from 
Stenotrophomonas maltophilia (PDB IDs: 5NE1 and 5NE3) 
reveals that ceftazidime, avibactam, and aztreonam work 
synergistically. This is because SBLs do not interact with 
aztreonam as substrates, in contrast to MBLs.70

4.1.2. MBLs with beta-lactamase inhibitor crystal structures

Liu et al.40 demonstrated that taniborbactam (VNRX-5133), 
a boronic-acid-containing broad-spectrum beta-lactamase 
inhibitor, can restore the efficacy of beta-lactams against 
carbapenem-resistant P. aeruginosa and carbapenem-resistant 
Enterobacterales (PDB IDs: 6SP6 and 6SP7). Additionally, 
several triazole-based compounds have shown promise 
for inhibiting broad-spectrum beta-lactamases based on 
molecular modeling and in vitro enzymatic studies. Bersani 
et al.43 identified three 1,2,4-triazole-3-thione derivatives 
that are effective against NDM-1 (New Delhi MBL), VIM-2 
(Verona integron-encoded MBL), and VIM-4 MBLs (PDB 
IDs: 8B1W, 8B1Z, and 8B20).

Fur thermore ,  Davies  et  a l . 52 ident i f ied  new 
diazabicyclooctanes (including ANT3310 and ANT90) 
that are effective against SBLs. Notably, ANT3310 restores 
carbapenem activity not only against carbapenem-resistant 
Enterobacterales but also against OXA-type beta-lactamase 

Figure 1. 3D interactions of a boronic acid derivative with TEM-64 beta-lactamase (PDB ID: 1JWZ). (A) 3D structure showing interacting residues 
with the ligand; (B) 2D interaction diagram highlighting Ser130 and key water-mediated hydrogen bonds.

A B
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Figure 2. 3D interactions of SA-13 derivative with the SHV-S130G mutant (PDB ID: 3V50). (A) 3D structure showing interacting residues with the 
ligand SA-13; (B) 2D interaction diagram showing that SA2-13 can form a stable intermediate similar to the wild-type complex. The structure was 
retrieved from the Protein Data Bank, and interactions were visualized using BIOVIA Discovery Studio Modeling Environment.

(OXA)–carrying A. baumannii isolates (PDB IDs: 6ZXI). 
Compared to relebactam and avibactam, derivatives of 
ANT3310 contain a fluorine substituent, which may contribute 
to enhanced efficacy (Figure 3). OXA-type beta-lactamases 
are plasmid-mediated enzymes particularly resistant to 
oxacillin.

Crystal structures help clarify interactions of newer beta-
lactamase inhibitors compared with older agents. Figure 4 
shows interacting residues of OXA-48 from K. pneumoniae 
(PDB ID: 6ZXI) with the new diazabicyclooctane ANT3310.

Leiris et al.53 designed and optimized a series of pyridine-
2-carboxylic acid derivatives suitable for inhibition of MBL-
producing isolates (NDM, VIM, and IMP). X-ray structures of 
VIM-2 carbapenem-hydrolyzing class D beta-lactamase from 
P. aeruginosa with these new inhibitors (PDB IDs: 5MXQ, 
5MXR, 6HF5) show inhibitor interactions with residues from 
the so-called “Zn2+” site (Asp, Cys, His).

The compound ETX2514 (PubChem CID: 137349620), 
in combination with sulbactam, is a potent inhibitor targeting 
the class D OXA-24 from A. baumanii (PDB ID: 5VFD).55

Crystallographic studies, along with thermodynamic 
experiments, identified a 2-triazolylthioacetamide derivative 
that interacts with key residues in the active site of VIM-2 
MBL from P. aeruginosa (PDB ID: 6KW1). The inhibitor 
binds to Zn2+ ions and interacts with Asn233, His263, and a 
water molecule (Figure 5).54

4.2. PBPs with inhibitor co-crystal structures

To combat antibiotic resistance in bacterial isolates 
producing beta-lactamases, one strategy is to target additional 
components of cell-wall synthesis. PBPs, which are found in 
both Gram-negative and Gram-positive bacteria, play a crucial 
role in peptidoglycan synthesis. Goldberg et al.71 described a 
novel γ-lactam siderophore (YU253911 and YU253434) that 
binds to P. aeruginosa PBP3 through multiple hydrogen bonds 
at the active site (PDB IDs: 7LC4 and 6VOT). In addition, the 
γ-lactam siderophore showed synergy with sulbactam against 
MDR Acinetobacter spp. in an animal model.72

Meticillin-resistant Staphylococcus aureus (MRSA) 
expresses a PBP, PBP2a, which supports cell-wall synthesis in 
the presence of beta-lactam antibiotics. Quinazolinone binds to 
an allosteric site and can facilitate beta-lactam binding. When 
combined with tazobactam, this interaction demonstrated 
synergy in an animal model (PDB IDs: 6Q9N and 6H5O).73

A recent study reported that specific boronate inhibitors 
are effective against MDR Neisseria gonorrhoeae. X-ray 
crystal structure analysis indicates that the VNRX-14079 
boronate compound binds to the transpeptidase domain of 
PBP2 from N. gonorrhoeae (PDB IDs 9MCZ and 9MD0).74 

This interaction involves a covalent bond between the boron 
atom and the active-site serine residue at position 310, as 
well as interactions involving the β3–β4 loop. These findings 
highlight the potential of these inhibitors in addressing this 
critical public health challenge.
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Figure 4. 3D interactions of the ANT3310 derivative with the OXA-48 carbapenem-hydrolyzing class D beta-lactamase (PDB ID: 6ZXI). (A) 3D 
structures showing interacting residues with the ligand ANT3310; (B) 2D interaction diagram highlighting the fluorine substituent in the active-site 
cavity. The structure was retrieved from the Protein Data Bank, and interactions were visualized using BIOVIA Discovery Studio Modeling Environment.

4.3. Beta-lactamase inhibitors effective against 
antibiotic-resistant Gram-positive species

Recent in silico studies have screened and identified 
benzimidazole-based compounds with the potential to restore 
beta-lactam susceptibility in MRSA. Nguyen et al.75 determined 
the X-ray structure of the S. aureus BlaR1 regulatory/sensor 
protein (UniProt P18357) crystallized with two benzimidazole-
based compounds. The first inhibitor, a boronate compound 
(boronate 4), is [1-[[2,4-bis(trifluoromethyl)phenyl]
methyl]benzimidazol-2-yl]sulfanylmethyl-{3}-oxidanyl-
bis(oxidanyl)boron] (PDB ID: 8C0P). The second inhibitor is 
an imidazole compound, 3-[[2,4-bis(trifluoromethyl)phenyl]
methyl]-5-(hydroxymethyl)-1H-imidazole-2-thione (PDB 
ID: 8C0S). Boronate 4 inhibitor interacts with the active-site 
serine residue and shows efficacy in animal experiments 
when combined with oxacillin or meropenem against MRSA 
(Figure 6).

Caselli et al.57 reported that two acylglycine boronic acids 
showed synergy with amoxicillin against S. aureus expressing 
a Group 2 beta-lactamase.

Mycobacterium tuberculosis is commonly classified as 
a high-G+C Gram-positive bacterium; however, it stains 
poorly with the Gram stain because of its lipid-rich cell 
envelope (notably mycolic acids), which underlies its acid-
fast property. Some genome-based analyses have suggested 
that M. tuberculosis shares more features with Gram-negative 
bacteria than with typical Gram-positive bacteria.76 BlaC is 
the principal beta-lactamase of M. tuberculosis. Resistance 
to beta-lactam/beta-lactamase inhibitor combinations is 
considered unlikely to arise primarily through structural 
alterations of BlaC. Kurz et al.77 demonstrated that an 
inhibitor-resistant BlaC variant retained susceptibility to 
meropenem-clavulanic acid combination (PDB ID: 4JLF).

5. Discussion

Multidrug-resistant organisms are a major global concern. 
There is an urgent need for alternatives to existing treatments 
for these MDR strains, including new drug combinations. 
However, developing new compounds is a lengthy process. 
To address the critical need for effective treatments against 

Figure 3. 2D structures of the beta-lactamase inhibitors (A) ANT3310 (PubChemCID: 146346770), (B) avibactam (PubChemCID: 9835049), and 
(C) relebactam (PubChemCID: 44129647).52
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MDR clinical isolates, researchers are actively exploring 
innovative solutions that combine antibiotics with other drugs 
or compounds. Advances in in silico studies have significantly 
improved the selection and optimization of compounds that 
may help reverse certain antibiotic-resistant traits.75 Artificial 
intelligence (AI) tools also show promise for improving the 
design of new inhibitors.

Infections caused by MDR organisms and the continued 
evolution of beta-lactamases challenge healthcare 
professionals to integrate clinical needs with basic science. 
Clinical laboratories must keep pace with newly approved 
synergistic combination treatments for infections caused 
by beta-lactamase-producing isolates. Accordingly, expert 
guidelines from EUCAST and CLSI support the interpretation 

Figure 5. Interactions of the ANT90 derivative with VIM-2 class D beta-lactamase (PDB ID: 6KW1). (A) 3D structure showing interacting residues 
with triazolylthioacetamides derivative; (B) 2D interaction diagram. The structure was retrieved from the Protein Data Bank, and interactions were 
visualized using BIOVIA Discovery Studio Modeling Environment.

A B

Figure 6. Interactions of benzimidazole-based compounds with S. auresus regulatory protein BlaR1. (A) Boronate 4 (PDB ID: 8C0P); (B) imidazole 
inhibitor (PDB ID: 8C0S). The structures were retrieved from the Protein Data Bank, and interactions were visualized using BIOVIA Discovery Studio 
Modeling Environment.
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of antibiogram results and help ensure alignment with current 
standards. However, both established therapies and new drugs 
must be continuously reviewed in light of beta-lactamase 
evolution and the ongoing emergence of new mutations.

The prevalence of beta-lactamases in Gram-negative 
bacilli, particularly within the order Enterobacterales, is a 
major concern. The TEM family of beta-lactamases has been 
studied extensively. TEM-1-type beta-lactamases are encoded 
by a gene located within the transposon Tn3. The association 
of this gene with plasmids is crucial because it facilitates 
rapid and widespread transmission of antibiotic resistance. 
Furthermore, mutations within the active-site cavity may be 
accompanied by secondary mutations at positions distant from 
the active site, which can help restore structural stability of 
the enzyme.

Understanding the molecular factors driving the evolution 
of inhibitor-resistant beta-lactamases is essential for designing 
new antibacterial compounds and for re-evaluating synergistic 
combinations. The significance of Ser130 in the active site of 
SBLs has supported the development of new inhibitors, such 
as SA-13, which retain activity against selected SHV mutants. 
These inhibitors may help address challenges posed by SHV 
mutations and improve treatment efficacy. Key structural 
information is available in PDB IDs 3V50 and 3V5M, which 
describe interactions relevant to inhibitor activity against 
resistant variants.69

X-ray structures of intermediate forms of SHV-1 mutants 
in complex with inhibitors provide insight into conformational 
changes in inhibitor-enzyme complex (PDB IDs: 2H10, 2H0Y, 
and 2H0T).78 In addition, boronic acid inhibitors have been 
evaluated as a strategy to address inhibitor-resistant beta-
lactamases.68

The emergence of inhibitor-resistant beta-lactamases 
is reducing treatment options and increasing the need 
for new synergistic antibiotic combinations. Bi-therapy 
and tri-therapy strategies offer potential approaches for 
resistant infections. Although beta-lactam/beta-lactamase 
inhibitor combinations have been used for many years, the 
rapid emergence of beta-lactamases resistant to currently 
available inhibitors continues to complicate the treatment of 
infections caused by MDR isolates. As a result, tri-therapy is 
increasingly considered, especially for nosocomial infections. 
A combination of imipenem, cilastatin, and relebactam has 
shown activity against imipenem-non-susceptible Gram-
negative pathogens.13,14 In addition, quinazolinone combined 
with piperacillin–tazobactam has demonstrated efficacy 
against MRSA.73

X-ray structures of beta-lactamases in complex with 
inhibitors provide valuable insights relevant to inhibitor 
design and resistance mitigation. However, structural findings 

should be complemented by kinetic studies assessing acylation 
and deacylation rates. Promising directions include rational 
drug design targeting broad-spectrum MBLs and SBLs. In this 
context, AI may accelerate structure-based inhibitor design.

6. Conclusion

The treatment of MDR infections often presents significant 
challenges because of limited therapeutic options, which 
can necessitate bi-therapy or tri-therapy. Investigation 
of synergistic combinations of beta-lactams and beta-
lactamase inhibitors is particularly promising because these 
therapies target peptidoglycan, which is exclusively found 
in prokaryotes. However, the emergence of beta-lactamases 
resistant to inhibitors highlights the need to optimize both 
existing and new inhibitors. X-ray crystal structures available 
in the PDB are valuable for understanding drug interactions 
and for comparing new compounds with approved inhibitors. 
Focusing research on specific drug combinations can support 
progress through coordinated efforts in both research and 
clinical settings.
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