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1. Introduction

The vagus nerve, cranial nerve 10 (CN X), is the longest of the 
CN. It spans the distance between the medulla and the colon, 
innervating the thoracic and abdominal portions of the body. 
The vagus nerve plays a key role in multiple systems, including 
the autonomic, cardiovascular, respiratory, gastrointestinal, 
immune, and endocrine systems.1 A key function of the 
vagus nerve is its interaction in brain-body communication. 
Brain–body communication is integral for maintaining proper 
function and overall health of the individual. The vagus 
nerve facilitates brain-body communication by modulating 
inflammatory and immune responses.2

The vagus nerve comprises sensory, motor, and 
parasympathetic fibers, giving it particular significance in 
chronic pain management. Approximately 80% of its fibers 
are afferent and 20% are efferent. They are classified into three 
types—A, B, and C—according to Erlanger and Glasser, based 
on their conduction velocities related to their respective sizes.4 
A-type fibers are myelinated; the larger subtype transmits 
somatic afferent and efferent information, while the smaller 
A subtype primarily carries visceral afferent information. 
B-type fibers contribute to efferent sympathetic activity, 
providing innervation to the parasympathetic preganglionic 
areas. C-type fibers are the smallest and unmyelinated, 

predominantly transmitting visceral afferent information; 
notably, they account for 60–80% of all vagus nerve fibers.

Current pain management stimulation options aim to 
stimulate the peripheral nervous system and central nervous 
system (CNS), with room for improvement. Pharmacological 
intervention over a long period can produce undesirable side 
effects, while interventional procedures may lose efficacy 
prematurely in some cases. Thus, exploration into vagus nerve 
stimulation (VNS) is necessary.

This review examines the potential of VNS to alter the course 
of chronic pain treatment.3 It begins with an understanding 
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of the anatomy and physiology of the vagus nerve, allowing 
for broader applications and novel therapies. Subsequently, 
the mechanisms of VNS are explored, emphasizing its role in 
inflammatory pathways and neuroinflammation. Furthermore, 
VNS is evaluated across its common clinical applications, 
including neuropathic pain, inflammatory pain, headache, 
and migraine. Expanding on the current literature within these 
fields provides an excellent foundation for future studies and 
enhances overall understanding.

2. Mechanisms of VNS in pain regulation

VNS is thought to ameliorate and regulate pain through 
several mechanisms.5 A key pathway is the cholinergic anti-
inflammatory pathway (CAP).6-9 Activation of the vagus 
nerve triggers the release of acetylcholine, which binds 
to alpha-7 nicotinic acetylcholine receptors (α7nAChR) 
on macrophages, leading to downstream inhibition of 
pro-inflammatory cytokines, including tumor necrosis 
factor-alpha (TNF-α), interleukin (IL)-1 beta, and IL-6.10,11 
Through the mediation of these systemic inflammatory 
mediators, VNS can reduce pain associated with chronic 
inflammatory conditions, such as rheumatoid arthritis and 
fibromyalgia.

In addition to cytokine modulation, VNS alters pain 
perception by modulating neurotransmitters. It increases the 
release of norepinephrine and serotonin in the CNS, both of 
which are implicated in the modulation of pain perception.12-14 
VNS also reduces glutamate excitotoxicity, lowering 
oxidative stress, cell death, hyperalgesia, and allodynia.15-17 
Furthermore, it has been demonstrated to suppress microglial 
activation and reduce neuroinflammation through α7nAchR, 
further contributing to its analgesic effects.18 Moreover, 
VNS alters pain perception by engaging key pain-regulatory 
structures in the CNS, including the periaqueductal gray, locus 
coeruleus, and nucleus tractus solitaries.18-20 Through these 
mechanisms, VNS presents a promising neuromodulatory 
approach for managing chronic pain.

Notably, transcutaneous auricular VNS (taVNS), a non-
invasive approach, has demonstrated therapeutic potential in 
drug-resistant migraine, treatment-resistant depression, and 
tinnitus, as reflected in its approval by the United States food 
and drug administration (FDA).20

3. Clinical applications of VNS for chronic pain

This chapter outlines the clinical applications of VNS in 
the treatment of chronic pain. VNS has proven effective in 
treating various types of pain, including neuropathic pain, 
inflammatory pain, headaches, and migraine. Despite these 
promising results, further research is needed to enhance 
treatment outcomes.

3.1. Neuropathic pain

An open-label Phase I/II trial study conducted by Lange 
et al.12 investigated the efficacy and overall safety of VNS 
in patients with treatment-resistant fibromyalgia. The study 
consisted of 14  patients initially implanted with the VNS 
device. Twelve patients completed the initial 3-month 
evaluation of VNS efficacy, and 11 patients were followed up 
at 5, 8, and 11 months. Overall, therapeutic efficacy was the 
primary measure, with pain relief, wellness, and functionality 
also evaluated. The side effects observed in this experimental 
group were consistent with previous studies conducted 
with fibromyalgia patients. While VNS could be a potential 
solution with significant efficacy, initial results suggest that 
its side effects and tolerability are comparable to current 
mainstream options. Further research could be conducted on 
a larger scale to test VNS efficacy in a larger sample.

According to a study conducted by Kutlu et al.,21 the 
relationship between auricular VNS (aVNS) and an exercise 
program on the quality of life (QoL) of fibromyalgia patients 
was investigated. The study included 60 female participants, 
randomly assigned to two groups of 30. One group performed 
a set of 20 home-based exercises, while the other performed 
the same exercises paired with aVNS. Baseline assessments 
were conducted, and outcomes were re-evaluated at study 
completion using a visual analog scale (VAS), the Beck 
Depression Inventory, the Beck Anxiety Inventory, the 
Fibromyalgia Impact Questionnaire, and the Short Form-36. 
The study reported that both groups demonstrated significant 
improvements in pain, depression, anxiety, functionality, and 
QoL scores. While VNS did not appear to provide a significant 
additive effect overall, the Short Form-36 was the sole 
contributor to show a significant difference between groups, 
suggesting a potential QoL benefit with VNS. Although the 
VNS group exhibited greater improvements compared to the 
exercise-only group, these differences were not statistically 
significant.

Muthulingam et al.,22 evaluated the anti-nociceptive 
potential of transcutaneous VNS (tVNS) in patients with 
chronic pancreatitis using a randomized double-blind 
crossover trial with both sham and active stimulation. 
Participants were randomly given 2-week timeframes of 
cervical tVNS followed by sham stimulation, or vice versa. 
Outcomes included overall pain relief, the global impression 
of change score, QoL, and the Brief Pain Inventory 
questionnaire. Similar to previous studies, results showed 
minimal to no differences between tVNS and sham, with 
neither primary nor secondary endpoints achieved. These 
findings suggest that further research is needed in this area. 
Given its stronger evidence base in headache and migraine, 
the limited efficacy observed here may reflect the challenges 
of applying VNS to neuropathic pain.
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3.2. Inflammatory pain

Initial studies have shown the important role the vagus 
nerve plays in inflammatory responses and chronic pain. 
Specifically, the CAP plays a critical role in mediating the 
anti-inflammatory properties of the vagus nerve.4

Farmer et al.,23 investigated the effects of tVNS on 
acid-induced esophageal pain. The study involved a 30-min 
infusion of 0.15 M hydrochloric acid into the distal portion 
of the esophagus. In one arm, 15 healthy participants were 
randomly assigned to receive either tVNS or sham treatment 
during the acid infusion. A  second group of 18 healthy 
participants underwent a randomized crossover design 
with both tVNS and sham. Both groups demonstrated pain 
reduction with tVNS compared to sham, suggesting potential 
efficacy of tVNS in treating esophageal pain.

Shi et al.,24 further examined VNS in patients with irritable 
bowel syndrome (IBS). Forty-two participants were randomly 
assigned to either sham treatment or tVNS for 4  weeks. 
Outcomes included abdominal pain (measured through VAS), 
anorectal motor and sensory function (assessed with high-
resolution anorectal manometry), and autonomic function 
(through electrocardiogram). Results showed significant 
improvements with tVNS, including reduced VAS pain scores, 
improved QoL, decreased IBS symptoms, enhanced anorectal 
inhibitory reflex, and improved rectal sensation.

Taken together, these studies support the potential of tVNS 
in inflammatory pain conditions. In IBS, tVNS alleviated 
both constipation and abdominal pain, further highlighting 
its therapeutic promise.

3.3. Headache and migraine

In an open-label study conducted by Goadsby et al.,25 the 
efficacy of non-invasive VNS (nVNS) in migraine treatment 
was evaluated. Participants had up to four migraines treated 
with two 90-s doses administered 15 min apart, over 6 weeks. 
VNS was delivered to the right cervical branch of the vagus 
nerve. Pain intensity was rated after treatment, ranging from 
moderate to severe. Among the 30 participants, 13 reported 
adverse events, including neck twitching, raspy voice, or 
redness at the site of the device. Notably, no unanticipated or 
adverse events were reported. Of the 19 events in participants 
who treated their first migraine at baseline, four reported no 
pain at the 2-h mark. In cases rated moderate to severe at 
baseline, the pain-free rate was slightly higher at 12 out of 
54 events.

Barbanti et al.,26 conducted a multicenter open-label study 
to further evaluate nVNS as a treatment option for migraine. 
Patients with high-frequency episodic migraine (HFEM) 
and chronic migraine were treated with VNS for up to three 
consecutive migraine attacks over 2  weeks. nVNS was 

administered to the right cervical branch of the vagus nerve 
in two 120-s doses, delivered 3 min apart. Of the 50 enrolled 
patients, 48 were treated for a final count of 131 migraine 
events. Based on VAS scores, pain relief  >50% was achieved 
in 56.3% of patients at 1 h and 64.6% at 2 h. Pain-free status 
was reported by 35.4% of patients at 1 h and 39.6% at 2 h. 
These findings suggest that nVNS is an effective therapeutic 
option in treating migraines.

Silberstein et al.,27 conducted a multicenter, double-blind 
study to evaluate the safety and efficacy of nVNS in adults 
with chronic migraine. After a 1-month baseline measurement, 
participants were randomly assigned to receive either nVNS 
or sham treatment for 2 months. The primary outcomes were 
safety, tolerability, and changes in headache days within 
28 days, accounting for acute medication usage. A total of 
59 participants were enrolled. Tolerability was comparable 
between groups, with most adverse events not causing any 
significant pain. The mean reduction in headache days was 
1.4 with VNS compared to 0.2 with sham. Based on the 
15  open-label phase completers in the VNS category, the 
mean reduction in headache days from baseline was 7.9 after 
8  months of VNS. These findings suggest that VNS is 
effective in treating chronic migraine and headache. However, 
additional studies are necessary to validate these results.

Najib et al.,28 further investigated the potential of nVNS in 
migraine prevention through a double-blind, sham-controlled 
study. Participants were monitored for 12 weeks, with 336 
participants enrolled. Of these, 113 completed at least 70 days 
of the protocol and adhered to instructions for at least 66% 
of the total duration. COVID-19 impacted the original study, 
significantly reducing the intended study duration and sample 
size. Results showed an average reduction of 3.12 monthly 
migraine days in the VNS group compared to 2.29 days in 
the sham group. Furthermore, the responder rate was also 
higher with VNS at 44.87%, versus 26.81% in the sham group. 
No device-related adverse events were reported. Overall, 
these findings support the growing evidence for nVNS as a 
promising approach in treating migraine-related chronic pain. 
However, more robust studies are needed to confirm efficacy. 
A breakdown of the key pain types and outcomes from the 
studies discussed is summarized in Table  1 to facilitate 
comparison across studies.

4. Current evidence and clinical trials

This section reviews VNS trials, highlighting its positive 
effects in treating headaches, including episodic, cluster, and 
migraine types, as well as its demonstrated effectiveness in 
treating stroke-related complications.

nVNS has been used in the treatment of episodic cluster 
headache and chronic cluster headache. In one study, VNS-
treated patients with episodic cluster headache experienced 
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a significant reduction in pain compared to baseline.29 In 
contrast, patients with chronic cluster headache showed no 
notable improvement after 15 min. However, limitations of 
this study included the short 15-min measurement window, 
which may have underestimated treatment effects, and the 
lack of efficacy in chronic cluster headache.

In patients with HFEM and chronic migraine, nVNS also 
demonstrated substantial results. After 2 h of stimulation, 50% 
of patients with HFEM and 26.5% of patients with chronic 
migraine were pain-free.30 However, limitations of this study 
included the small sample size (n = 50) and differences in 
headache severity, with chronic migraine typically reported 
as mild-to-moderate and episodic headaches as severe.

Another study assessed tVNS in patients with post-
COVID-related headaches and found significant reductions 
in VAS scores, suggesting potential benefit.30 Similarly, 
limitations of this study included a small sample size (n = 30). 
In addition, tVNS has been shown to reduce pain sensitivity, 
lowering tonic heat pain and increasing mechanical pain 
thresholds.31 More studies on tVNS are necessary to confirm 
its efficacy.

Studies by Lindemann et al.,32 and Hays et al.,33 
investigated the efficacy of VNS on cortical spreading 
depolarization related to stroke and loss of forelimb function. 

VNS has been observed to be effective in treating both. In 
a rat model of focal ischemia, invasive VNS reduced the 
frequency of spreading depolarization without affecting 
pulse rate, respiratory rate, or oxygen saturation. In addition, 
pairing VNS with rehabilitation markedly improved forelimb 
recovery. While rehabilitation alone restored forelimb 
recovery to 34 ± 19%, combining it with VNS increased 
recovery to 96 ± 3%. These findings suggest that VNS may 
be an effective treatment for elderly stroke patients, both in 
reducing the frequency of spreading depolarization and in 
enhancing forelimb function.

Moreover, VNS has demonstrated clinical benefits in 
treating drug-resistant depression and refractory epilepsy. 
Mechanistically, VNS increases hippocampal norepinephrine 
concentrations, which may contribute to its therapeutic effects. 
This application has shown success in treating depression 
and epilepsy.34 However, one study revealed significant 
limitations in its double-blind design. In the sham group and 
the nVNS group, there were reductions in the number of 
headache days per month, suggesting that the sham device 
functioned as a strong placebo. In fact, sham stimulation often 
produced greater symptom relief than conventional placebo 
pill. Treatment allocation was correctly guessed by 58% of 
patients in the VNS group and 62% in the sham group.35 A 
recurring limitation of these studies is the small sample size 
(n = 30–50), which makes it difficult to establish statistical 
significance. Future research with larger cohorts and improved 
placebo controls is essential to confirm the efficacy of VNS 
and reduce confounding placebo effects.

5. Future directions and innovations

Future innovations and areas requiring improvement are 
discussed in this chapter. While VNS has proven effective in 
treating various chronic conditions, there remains significant 
potential for advancement. Emerging directions include the 
development of personalized stimulation protocols and the 
combination of VNS with other therapeutic modalities.

5.1. Emerging technologies and wearable VNS devices

Innovations in precision neuromodulation and advancements 
in device design have the potential to improve therapeutic 
efficacy and patient compliance. The non-invasive nature 
of VNS broadens its applicability and facilitates its use 
across diseases. Traditional nVNS, such as tVNS, uses skin 
electrodes for stimulation and offers a non-invasive alternative 
to surgically implanted VNS devices, which are limited by 
their invasive nature.36,37 The primary application areas for 
nVNS are the auricular and cervical regions.38 Compared 
to implanted systems, nVNS carries a lower risk of adverse 
effects, including infection, post-surgical complications, 
implant rejection, and patient pain. Furthermore, taVNS is 

Table 1. Overview of clinical studies on vagus nerve stimulation 
for chronic pain
Study Pain type Key outcomes

Lange et al.12 Neuropathic Similar results to existing treatment options; 
positive results indicated

Kutlu et al.21 Neuropathic Both home‑based exercise and the same 
exercise paired with auricular VNS groups 
showed an improvement trend, with only the 
Short Form‑36 results demonstrating significant 
benefits

Muthulingam 
et al.22

Neuropathic No significant difference between tVNS and 
sham treatments

Farmer et al.23 Inflammatory Pain reduction observed in tVNS groups 
compared to sham

Shi et al.24 Inflammatory tVNS improved VAS, QoL, and rectal 
sensation; effective for irritable bowel 
syndrome

Goadsby 
et al.25

Migraine No serious or unexpected events occurred; 
4/19 mild cases reported no pain at the 2‑h 
mark; 12/54 moderate and severe cases 
reported pain‑free

Barbanti  
et al.26

Migraine 64.6% VAS reduction at 2 h; 39.6% pain‑free 
rate

Silberstein 
et al.27

Migraine Mean reduction of 1.4 headache days in the 
VNS group versus 0.2 days in the sham group; 
good tolerability

Najib et al.28 Migraine Mean reduction of 3.12 headache days in the 
VNS group versus 2.29 days in the sham group; 
higher responder rate

Abbreviations: QoL: Quality of life; tVNS: Transcutaneous vagus nerve 
stimulation; VAS: Visual analog scale; VNS: Vagus nerve stimulation.
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inexpensive, safe, and portable, enhancing its feasibility for 
clinical translation and widespread adoption.39,40

Recent advances in nVNS technology have introduced 
real-time feedback mechanisms that assess vital physiological 
markers and adjust stimulation parameters to optimize 
therapeutic efficacy.41 Clinically, nVNS is utilized for various 
neurological conditions, including chronic migraines, 
headaches, depression, epilepsy, and pain management.42-45 
It has also shown beneficial effects in chronic pain diseases, 
such as systemic lupus erythematosus-related pain and 
IBS.46,24 Miniaturization and enhanced portability of these 
devices enable continuous or on-demand therapy tailored to 
individual needs, making nVNS a more practical treatment 
option.48 Its wearable design further increases accessibility 
for clinicians and patients, paving the way for exploring 
VNS in new contexts, such as at-home treatment.49,50 While 
nVNS, especially taVNS, has significant potential for 
broader adoption, advancements in device engineering and 
investigation of its underlying mechanisms are essential to 
achieve its aims in neurorehabilitation.40

5.2. Potential for personalized VNS therapy

Developing personalized VNS paradigms requires an 
understanding of the targeted disorders.45,47,50,51 Advances 
in precision neuromodulation are driving nVNS toward 
more effective treatments.52 Neuromodulation, particularly 
electrical stimulation of the autonomic nervous system, 
shows promise as a non-pharmacological approach for 
various chronic conditions.53-55 Precision VNS selectively 
stimulates different vagus nerve fiber bundles, allowing 
precise control over heart rate regulation while minimizing 
off-target effects.56-58

Non-invasive methods, such as aVNS, are gaining 
popularity due to their safety profile and lower costs.59-62 
aVNS has proven effective for conditions such as migraines 
and chronic pain, with fewer adverse effects than traditional 
methods.56,63 However, the therapeutic outcomes of aVNS 
can be inconsistent and unpredictable. The necessary dose 
for treatment is not specified, and issues of over- and under-
stimulation can lead to failure to respond. The parameters 
are often chosen empirically based on patient feedback.64-67

To address this challenge, a closed-loop aVNS system, 
which continuously personalizes stimulation based on 
real-time biofeedback, is necessary to meet individual 
physiological demands.68 Such systems adjust settings based 
on autonomic biomarkers, such as heart rate variability and 
respiration.69,70 Personalized VNS can enhance the durability 
of positive treatment effects, minimize adverse effects, and 
lower the energy footprint of stimulation patterns, ultimately 
reducing the number of treatment-resistant patients.71 
Advances in technology are enhancing these systems by 

integrating real-time adjustments based on patient data.72 As 
precision neuromodulation evolves, it is poised to make aVNS 
a key component in personalized medicine, with expanding 
applications across inflammatory and neurological disorders.48 
Despite its safety advantages, questions remain regarding 
the efficacy and neurophysiological mechanisms underlying 
VNS.44,58

5.3. Combination therapies

Combining nVNS with complementary treatment strategies 
can enhance treatment effects in complex inflammatory 
diseases, improve autonomic balance, and manage chronic 
inflammation. When paired with methods such as transcranial 
magnetic stimulation or transcutaneous electrical nerve 
stimulation,73,75 nVNS demonstrates greater synergistic 
potential and longer-lasting effects compared to either 
treatment alone. In addition, this combined approach has been 
especially promising for headaches and migraines.4

In rehabilitation contexts, pairing VNS with sensory and 
motor stimulation significantly enhances neuroplasticity 
and strengthens personalized treatment efficacy.75 By 
rapidly engaging neuromodulatory networks, VNS boosts 
training-related synaptic plasticity76 and facilitates recovery 
in conditions such as spinal cord injury, brain injury, and 
peripheral nerve damage.77-81 These synergistic effects 
have contributed to the FDA’s approval of VNS for stroke 
rehabilitation.82

Beyond physical recovery, VNS combined with cognitive 
behavioral therapy has shown benefit in improving 
psychological conditions, including depression.81 The 
underlying mechanism involves modulation of neurochemical 
pathways that support neuroplasticity and enhance cognitive 
functions.82 Future investigation is necessary to determine the 
optimal treatment durations, indications, and individualized 
protocols to maximize the benefits of VNS in multimodal 
therapeutic strategies.41

Rehabilitation exercises paired with VNS for stroke 
patients have traditionally been standardized for clinical 
trials, but innovative strategies such as telerehabilitation 
and game-based exercises also show promise.84 Moreover, 
combining dietary interventions with VNS has demonstrated 
synergistic effects, suggesting that longer off-times in 
VNS may enhance effectiveness.85 Combining VNS 
with pharmacological agents, such as anti-inflammatory 
medications or biologics, has also shown positive results, 
such as amplifying the effects of TNF inhibitors in 
rheumatoid arthritis and reducing corticosteroid doses in 
asthma, thereby improving patient outcomes.86 A summary 
of these combinatorial methods and their key findings is 
presented in Table 2, highlighting which approaches yielded 
the most promising results.
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6. Conclusion

This review highlights the potential of VNS as an effective 
strategy for alleviating chronic pain. VNS has demonstrated 
therapeutic benefits in conditions such as rheumatoid arthritis, 
fibromyalgia, diabetic neuropathy, and migraines, representing 
a revolutionary technique in chronic pain management. Its 
analgesic effects are thought to be mediated through diverse 
pathways, including the CAP, neurotransmitter modulation, 
and suppression of microglial activation. nVNS has been 
effective in alleviating pain in episodic migraines, cluster 
headaches, and COVID-19-related headaches, though its 
efficacy in chronic cluster headaches requires more research. 
Experimental evidence also supports its role in reducing pain 
sensitivity and enhancing recovery in stroke models. The non-
invasive characteristic of aVNS may broaden its applicability 
across a wider range of diseases, while innovations in 
engineering, precision neuromodulation, and equipment 
development continue to improve therapeutic efficacy.

Despite these advances, challenges remain. Achieving 
consistent outcomes and determining optimal dosing remain 
obstacles, particularly in aVNS. Closed-loop aVNS systems 
that personalize stimulation in real time using autonomic 
markers, such as heart rate and respiratory rate, are essential 
to meet individual physiological needs. nVNS represents a 
promising step toward wearable devices for personalized 
therapy. However, challenges such as limited sample size, 

placebo effects, and contradictory results highlight the 
need for further research. Overall, VNS offers encouraging 
outcomes for chronic pain management. Continue research 
into combination therapies and technological innovations 
is essential to maximize the potential of VNS and establish 
novel, effective approaches for managing chronic and 
complex pain conditions.
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