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Background: Chronic pain poses a significant challenge to the general population, especially in older adults. As a result,
there is a growing emphasis on developing novel treatment options and expanding the use of emerging technologies.
Objective: This comprehensive review aims to guide practitioners in chronic pain management by extending the current
application of vagus nerve stimulation (VNS). The review examined peer-reviewed studies, including multicenter cohort
studies and clinical trials, published within the past 25 years. VNS has shown the most promising results in pain reduction
for headache and migraine, with less relief in inflammatory and neuropathic pain as compared to current first-line treatment
options. Conclusion: Overall, this review seeks to compile and critically analyze the effect and efficacy of VNS on different
forms of chronic pain using the most current studies and research applicable.
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1. Introduction

The vagus nerve, cranial nerve 10 (CN X), is the longest of the
CN. It spans the distance between the medulla and the colon,
innervating the thoracic and abdominal portions of the body.
The vagus nerve plays a key role in multiple systems, including
the autonomic, cardiovascular, respiratory, gastrointestinal,
immune, and endocrine systems.' A key function of the
vagus nerve is its interaction in brain-body communication.
Brain—body communication is integral for maintaining proper
function and overall health of the individual. The vagus
nerve facilitates brain-body communication by modulating
inflammatory and immune responses.?

The vagus nerve comprises sensory, motor, and
parasympathetic fibers, giving it particular significance in
chronic pain management. Approximately 80% of its fibers
are afferent and 20% are efferent. They are classified into three
types—A, B, and C—according to Erlanger and Glasser, based
on their conduction velocities related to their respective sizes.*
A-type fibers are myelinated; the larger subtype transmits
somatic afferent and efferent information, while the smaller
A subtype primarily carries visceral afferent information.
B-type fibers contribute to efferent sympathetic activity,
providing innervation to the parasympathetic preganglionic
areas. C-type fibers are the smallest and unmyelinated,
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predominantly transmitting visceral afferent information;
notably, they account for 60—80% of all vagus nerve fibers.

Current pain management stimulation options aim to
stimulate the peripheral nervous system and central nervous
system (CNS), with room for improvement. Pharmacological
intervention over a long period can produce undesirable side
effects, while interventional procedures may lose efficacy
prematurely in some cases. Thus, exploration into vagus nerve
stimulation (VNS) is necessary.

This review examines the potential of VNS to alter the course
of chronic pain treatment.? It begins with an understanding
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of the anatomy and physiology of the vagus nerve, allowing
for broader applications and novel therapies. Subsequently,
the mechanisms of VNS are explored, emphasizing its role in
inflammatory pathways and neuroinflammation. Furthermore,
VNS is evaluated across its common clinical applications,
including neuropathic pain, inflammatory pain, headache,
and migraine. Expanding on the current literature within these
fields provides an excellent foundation for future studies and
enhances overall understanding.

2. Mechanisms of VNS in pain regulation

VNS is thought to ameliorate and regulate pain through
several mechanisms.’ A key pathway is the cholinergic anti-
inflammatory pathway (CAP).*? Activation of the vagus
nerve triggers the release of acetylcholine, which binds
to alpha-7 nicotinic acetylcholine receptors (7nAChR)
on macrophages, leading to downstream inhibition of
pro-inflammatory cytokines, including tumor necrosis
factor-alpha (TNF-a), interleukin (IL)-1 beta, and IL-6.!%!!
Through the mediation of these systemic inflammatory
mediators, VNS can reduce pain associated with chronic
inflammatory conditions, such as rheumatoid arthritis and
fibromyalgia.

In addition to cytokine modulation, VNS alters pain
perception by modulating neurotransmitters. It increases the
release of norepinephrine and serotonin in the CNS, both of
which are implicated in the modulation of pain perception.'>!*
VNS also reduces glutamate excitotoxicity, lowering
oxidative stress, cell death, hyperalgesia, and allodynia.'>"”
Furthermore, it has been demonstrated to suppress microglial
activation and reduce neuroinflammation through ct7nAchR,
further contributing to its analgesic effects.'® Moreover,
VNS alters pain perception by engaging key pain-regulatory
structures in the CNS, including the periaqueductal gray, locus
coeruleus, and nucleus tractus solitaries.'®*** Through these
mechanisms, VNS presents a promising neuromodulatory
approach for managing chronic pain.

Notably, transcutaneous auricular VNS (taVNS), a non-
invasive approach, has demonstrated therapeutic potential in
drug-resistant migraine, treatment-resistant depression, and
tinnitus, as reflected in its approval by the United States food
and drug administration (FDA).%

3. Clinical applications of VNS for chronic pain

This chapter outlines the clinical applications of VNS in
the treatment of chronic pain. VNS has proven effective in
treating various types of pain, including neuropathic pain,
inflammatory pain, headaches, and migraine. Despite these
promising results, further research is needed to enhance
treatment outcomes.

Vagus nerve stimulation for chronic pain

3.1. Neuropathic pain

An open-label Phase I/II trial study conducted by Lange
et al."? investigated the efficacy and overall safety of VNS
in patients with treatment-resistant fibromyalgia. The study
consisted of 14 patients initially implanted with the VNS
device. Twelve patients completed the initial 3-month
evaluation of VNS efficacy, and 11 patients were followed up
at 5, 8, and 11 months. Overall, therapeutic efficacy was the
primary measure, with pain relief, wellness, and functionality
also evaluated. The side effects observed in this experimental
group were consistent with previous studies conducted
with fibromyalgia patients. While VNS could be a potential
solution with significant efficacy, initial results suggest that
its side effects and tolerability are comparable to current
mainstream options. Further research could be conducted on
a larger scale to test VNS efficacy in a larger sample.

According to a study conducted by Kutlu ez al.,”' the
relationship between auricular VNS (aVNS) and an exercise
program on the quality of life (QoL) of fibromyalgia patients
was investigated. The study included 60 female participants,
randomly assigned to two groups of 30. One group performed
a set of 20 home-based exercises, while the other performed
the same exercises paired with aVNS. Baseline assessments
were conducted, and outcomes were re-evaluated at study
completion using a visual analog scale (VAS), the Beck
Depression Inventory, the Beck Anxiety Inventory, the
Fibromyalgia Impact Questionnaire, and the Short Form-36.
The study reported that both groups demonstrated significant
improvements in pain, depression, anxiety, functionality, and
QoL scores. While VNS did not appear to provide a significant
additive effect overall, the Short Form-36 was the sole
contributor to show a significant difference between groups,
suggesting a potential QoL benefit with VNS. Although the
VNS group exhibited greater improvements compared to the
exercise-only group, these differences were not statistically
significant.

Muthulingam et al.,* evaluated the anti-nociceptive
potential of transcutaneous VNS (tVNS) in patients with
chronic pancreatitis using a randomized double-blind
crossover trial with both sham and active stimulation.
Participants were randomly given 2-week timeframes of
cervical tVNS followed by sham stimulation, or vice versa.
Outcomes included overall pain relief, the global impression
of change score, QoL, and the Brief Pain Inventory
questionnaire. Similar to previous studies, results showed
minimal to no differences between tVNS and sham, with
neither primary nor secondary endpoints achieved. These
findings suggest that further research is needed in this area.
Given its stronger evidence base in headache and migraine,
the limited efficacy observed here may reflect the challenges
of applying VNS to neuropathic pain.
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3.2. Inflammatory pain

Initial studies have shown the important role the vagus
nerve plays in inflammatory responses and chronic pain.
Specifically, the CAP plays a critical role in mediating the
anti-inflammatory properties of the vagus nerve.*

Farmer et al.,” investigated the effects of tVNS on
acid-induced esophageal pain. The study involved a 30-min
infusion of 0.15 M hydrochloric acid into the distal portion
of the esophagus. In one arm, 15 healthy participants were
randomly assigned to receive either tVNS or sham treatment
during the acid infusion. A second group of 18 healthy
participants underwent a randomized crossover design
with both tVNS and sham. Both groups demonstrated pain
reduction with tVNS compared to sham, suggesting potential
efficacy of tVNS in treating esophageal pain.

Shi et al.,** further examined VNS in patients with irritable
bowel syndrome (IBS). Forty-two participants were randomly
assigned to either sham treatment or tVNS for 4 weeks.
Outcomes included abdominal pain (measured through VAS),
anorectal motor and sensory function (assessed with high-
resolution anorectal manometry), and autonomic function
(through electrocardiogram). Results showed significant
improvements with tVNS, including reduced VAS pain scores,
improved QoL, decreased IBS symptoms, enhanced anorectal
inhibitory reflex, and improved rectal sensation.

Taken together, these studies support the potential of tVNS
in inflammatory pain conditions. In IBS, tVNS alleviated
both constipation and abdominal pain, further highlighting
its therapeutic promise.

3.3. Headache and migraine

In an open-label study conducted by Goadsby et al.,® the
efficacy of non-invasive VNS (nVNS) in migraine treatment
was evaluated. Participants had up to four migraines treated
with two 90-s doses administered 15 min apart, over 6 weeks.
VNS was delivered to the right cervical branch of the vagus
nerve. Pain intensity was rated after treatment, ranging from
moderate to severe. Among the 30 participants, 13 reported
adverse events, including neck twitching, raspy voice, or
redness at the site of the device. Notably, no unanticipated or
adverse events were reported. Of the 19 events in participants
who treated their first migraine at baseline, four reported no
pain at the 2-h mark. In cases rated moderate to severe at
baseline, the pain-free rate was slightly higher at 12 out of
54 events.

Barbanti et al.,* conducted a multicenter open-label study
to further evaluate nVNS as a treatment option for migraine.
Patients with high-frequency episodic migraine (HFEM)
and chronic migraine were treated with VNS for up to three
consecutive migraine attacks over 2 weeks. nVNS was
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administered to the right cervical branch of the vagus nerve
in two 120-s doses, delivered 3 min apart. Of the 50 enrolled
patients, 48 were treated for a final count of 131 migraine
events. Based on VAS scores, pain relief >50% was achieved
in 56.3% of patients at 1 h and 64.6% at 2 h. Pain-free status
was reported by 35.4% of patients at 1 h and 39.6% at 2 h.
These findings suggest that nVNS is an effective therapeutic
option in treating migraines.

Silberstein et al.,”’ conducted a multicenter, double-blind
study to evaluate the safety and efficacy of nVNS in adults
with chronic migraine. After a 1-month baseline measurement,
participants were randomly assigned to receive either nVNS
or sham treatment for 2 months. The primary outcomes were
safety, tolerability, and changes in headache days within
28 days, accounting for acute medication usage. A total of
59 participants were enrolled. Tolerability was comparable
between groups, with most adverse events not causing any
significant pain. The mean reduction in headache days was
1.4 with VNS compared to 0.2 with sham. Based on the
15 open-label phase completers in the VNS category, the
mean reduction in headache days from baseline was 7.9 after
8 months of VNS. These findings suggest that VNS is
effective in treating chronic migraine and headache. However,
additional studies are necessary to validate these results.

Najib et al.,”® further investigated the potential of nVNS in
migraine prevention through a double-blind, sham-controlled
study. Participants were monitored for 12 weeks, with 336
participants enrolled. Of these, 113 completed at least 70 days
of the protocol and adhered to instructions for at least 66%
of the total duration. COVID-19 impacted the original study,
significantly reducing the intended study duration and sample
size. Results showed an average reduction of 3.12 monthly
migraine days in the VNS group compared to 2.29 days in
the sham group. Furthermore, the responder rate was also
higher with VNS at 44.87%, versus 26.81% in the sham group.
No device-related adverse events were reported. Overall,
these findings support the growing evidence for nVNS as a
promising approach in treating migraine-related chronic pain.
However, more robust studies are needed to confirm efficacy.
A breakdown of the key pain types and outcomes from the
studies discussed is summarized in Table 1 to facilitate
comparison across studies.

4, Current evidence and clinical trials

This section reviews VNS trials, highlighting its positive
effects in treating headaches, including episodic, cluster, and
migraine types, as well as its demonstrated effectiveness in
treating stroke-related complications.

nVNS has been used in the treatment of episodic cluster
headache and chronic cluster headache. In one study, VNS-
treated patients with episodic cluster headache experienced

3



Patel, et al.

Table 1. Overview of clinical studies on vagus nerve stimulation
for chronic pain

Study Pain type Key outcomes

Lange ef al.'”>  Neuropathic ~ Similar results to existing treatment options;
positive results indicated

Kutlu e al*®  Neuropathic ~ Both home-based exercise and the same
exercise paired with auricular VNS groups
showed an improvement trend, with only the
Short Form-36 results demonstrating significant
benefits

Muthulingam  Neuropathic ~ No significant difference between tVNS and

etal? sham treatments

Farmer ef al.* Inflammatory Pain reduction observed in tVNS groups
compared to sham

Shi et al > Inflammatory tVNS improved VAS, QoL, and rectal
sensation; effective for irritable bowel
syndrome

Goadsby Migraine No serious or unexpected events occurred;

et al® 4/19 mild cases reported no pain at the 2-h
mark; 12/54 moderate and severe cases
reported pain-free

Barbanti Migraine 64.6% VAS reduction at 2 h; 39.6% pain-free

et al* rate

Silberstein Migraine Mean reduction of 1.4 headache days in the

etal® VNS group versus 0.2 days in the sham group;
good tolerability

Najib et al.®  Migraine Mean reduction of 3.12 headache days in the

VNS group versus 2.29 days in the sham group;
higher responder rate

Abbreviations: QoL: Quality of life; tVNS: Transcutaneous vagus nerve
stimulation; VAS: Visual analog scale; VNS: Vagus nerve stimulation.

a significant reduction in pain compared to baseline.?’ In
contrast, patients with chronic cluster headache showed no
notable improvement after 15 min. However, limitations of
this study included the short 15-min measurement window,
which may have underestimated treatment effects, and the
lack of efficacy in chronic cluster headache.

In patients with HFEM and chronic migraine, nVNS also
demonstrated substantial results. After 2 h of stimulation, 50%
of patients with HFEM and 26.5% of patients with chronic
migraine were pain-free.** However, limitations of this study
included the small sample size (n = 50) and differences in
headache severity, with chronic migraine typically reported
as mild-to-moderate and episodic headaches as severe.

Another study assessed tVNS in patients with post-
COVID-related headaches and found significant reductions
in VAS scores, suggesting potential benefit.’® Similarly,
limitations of this study included a small sample size (n = 30).
In addition, tVNS has been shown to reduce pain sensitivity,
lowering tonic heat pain and increasing mechanical pain
thresholds.*! More studies on tVNS are necessary to confirm
its efficacy.

Studies by Lindemann et al.,’* and Hays et al.,*
investigated the efficacy of VNS on cortical spreading
depolarization related to stroke and loss of forelimb function.

Vagus nerve stimulation for chronic pain

VNS has been observed to be effective in treating both. In
a rat model of focal ischemia, invasive VNS reduced the
frequency of spreading depolarization without affecting
pulse rate, respiratory rate, or oxygen saturation. In addition,
pairing VNS with rehabilitation markedly improved forelimb
recovery. While rehabilitation alone restored forelimb
recovery to 34 = 19%, combining it with VNS increased
recovery to 96 + 3%. These findings suggest that VNS may
be an effective treatment for elderly stroke patients, both in
reducing the frequency of spreading depolarization and in
enhancing forelimb function.

Moreover, VNS has demonstrated clinical benefits in
treating drug-resistant depression and refractory epilepsy.
Mechanistically, VNS increases hippocampal norepinephrine
concentrations, which may contribute to its therapeutic effects.
This application has shown success in treating depression
and epilepsy.** However, one study revealed significant
limitations in its double-blind design. In the sham group and
the nVNS group, there were reductions in the number of
headache days per month, suggesting that the sham device
functioned as a strong placebo. In fact, sham stimulation often
produced greater symptom relief than conventional placebo
pill. Treatment allocation was correctly guessed by 58% of
patients in the VNS group and 62% in the sham group.*> A
recurring limitation of these studies is the small sample size
(n = 30-50), which makes it difficult to establish statistical
significance. Future research with larger cohorts and improved
placebo controls is essential to confirm the efficacy of VNS
and reduce confounding placebo effects.

5. Future directions and innovations

Future innovations and areas requiring improvement are
discussed in this chapter. While VNS has proven effective in
treating various chronic conditions, there remains significant
potential for advancement. Emerging directions include the
development of personalized stimulation protocols and the
combination of VNS with other therapeutic modalities.

5.1. Emerging technologies and wearable VNS devices

Innovations in precision neuromodulation and advancements
in device design have the potential to improve therapeutic
efficacy and patient compliance. The non-invasive nature
of VNS broadens its applicability and facilitates its use
across diseases. Traditional nVNS, such as tVNS, uses skin
electrodes for stimulation and offers a non-invasive alternative
to surgically implanted VNS devices, which are limited by
their invasive nature.3®3’ The primary application areas for
nVNS are the auricular and cervical regions.*® Compared
to implanted systems, nVNS carries a lower risk of adverse
effects, including infection, post-surgical complications,
implant rejection, and patient pain. Furthermore, taVNS is
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inexpensive, safe, and portable, enhancing its feasibility for
clinical translation and widespread adoption.?*#

Recent advances in nVNS technology have introduced
real-time feedback mechanisms that assess vital physiological
markers and adjust stimulation parameters to optimize
therapeutic efficacy.*! Clinically, nVNS is utilized for various
neurological conditions, including chronic migraines,
headaches, depression, epilepsy, and pain management.*>*
It has also shown beneficial effects in chronic pain diseases,
such as systemic lupus erythematosus-related pain and
IBS.*?* Miniaturization and enhanced portability of these
devices enable continuous or on-demand therapy tailored to
individual needs, making nVNS a more practical treatment
option.®® Tts wearable design further increases accessibility
for clinicians and patients, paving the way for exploring
VNS in new contexts, such as at-home treatment.*-** While
nVNS, especially taVNS, has significant potential for
broader adoption, advancements in device engineering and
investigation of its underlying mechanisms are essential to
achieve its aims in neurorehabilitation.*’

5.2. Potential for personalized VNS therapy

Developing personalized VNS paradigms requires an
understanding of the targeted disorders.*#”*%3! Advances
in precision neuromodulation are driving nVNS toward
more effective treatments.> Neuromodulation, particularly
electrical stimulation of the autonomic nervous system,
shows promise as a non-pharmacological approach for
various chronic conditions.™>* Precision VNS selectively
stimulates different vagus nerve fiber bundles, allowing
precise control over heart rate regulation while minimizing
off-target effects.>¢-5

Non-invasive methods, such as aVNS, are gaining
popularity due to their safety profile and lower costs.’*
aVNS has proven effective for conditions such as migraines
and chronic pain, with fewer adverse effects than traditional
methods.’*% However, the therapeutic outcomes of aVNS
can be inconsistent and unpredictable. The necessary dose
for treatment is not specified, and issues of over- and under-
stimulation can lead to failure to respond. The parameters
are often chosen empirically based on patient feedback.®*’

To address this challenge, a closed-loop aVNS system,
which continuously personalizes stimulation based on
real-time biofeedback, is necessary to meet individual
physiological demands.®® Such systems adjust settings based
on autonomic biomarkers, such as heart rate variability and
respiration.®’ Personalized VNS can enhance the durability
of positive treatment effects, minimize adverse effects, and
lower the energy footprint of stimulation patterns, ultimately
reducing the number of treatment-resistant patients.”
Advances in technology are enhancing these systems by
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integrating real-time adjustments based on patient data.” As
precision neuromodulation evolves, it is poised to make aVNS
a key component in personalized medicine, with expanding
applications across inflammatory and neurological disorders.**
Despite its safety advantages, questions remain regarding
the efficacy and neurophysiological mechanisms underlying
VNS.44’58

5.3. Combination therapies

Combining nVNS with complementary treatment strategies
can enhance treatment effects in complex inflammatory
diseases, improve autonomic balance, and manage chronic
inflammation. When paired with methods such as transcranial
magnetic stimulation or transcutaneous electrical nerve
stimulation,”’> nVNS demonstrates greater synergistic
potential and longer-lasting effects compared to either
treatment alone. In addition, this combined approach has been
especially promising for headaches and migraines.*

In rehabilitation contexts, pairing VNS with sensory and
motor stimulation significantly enhances neuroplasticity
and strengthens personalized treatment efficacy.” By
rapidly engaging neuromodulatory networks, VNS boosts
training-related synaptic plasticity’ and facilitates recovery
in conditions such as spinal cord injury, brain injury, and
peripheral nerve damage.”’8! These synergistic effects
have contributed to the FDA’s approval of VNS for stroke
rehabilitation.®

Beyond physical recovery, VNS combined with cognitive
behavioral therapy has shown benefit in improving
psychological conditions, including depression.®! The
underlying mechanism involves modulation of neurochemical
pathways that support neuroplasticity and enhance cognitive
functions.® Future investigation is necessary to determine the
optimal treatment durations, indications, and individualized
protocols to maximize the benefits of VNS in multimodal
therapeutic strategies.*!

Rehabilitation exercises paired with VNS for stroke
patients have traditionally been standardized for clinical
trials, but innovative strategies such as telerehabilitation
and game-based exercises also show promise.* Moreover,
combining dietary interventions with VNS has demonstrated
synergistic effects, suggesting that longer off-times in
VNS may enhance effectiveness.®> Combining VNS
with pharmacological agents, such as anti-inflammatory
medications or biologics, has also shown positive results,
such as amplifying the effects of TNF inhibitors in
rheumatoid arthritis and reducing corticosteroid doses in
asthma, thereby improving patient outcomes.*® A summary
of these combinatorial methods and their key findings is
presented in Table 2, highlighting which approaches yielded
the most promising results.
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Table 2. Overview of combinatorial vagus nerve stimulation
(VNS) therapies and key findings

Study Combination strategy Key findings

Holland et al.” Non-invasive Potential to enhance

Sackeim™ VNS+TMS or TENS  neuroplasticity, autonomic
balance, and chronic
inflammation management

Hays et al.” VNS+specific training  * Stimulates neuromodulatory

Hays et al.™ (rehabilitation) networks and boosts synaptic

Khodaparast et al.” plasticity related to training

Hays et al.’ * Helps with recovery in spinal

Meyers et al.” cord injury, brain injury, and

: eripheral nervous system
Noble et al.”® g P Y
" amage

Hays Aet al. “ * Led to the FDA’s approval of

De Ridder e7 al. VNS for stroke treatment

Tyler et al ¥

Abd-Elsayed et al*>  VNS+CBT Improvement in psychological

Engineer ef al.® conditions, such as depression,
through neurochemical activity

Kossoff et al.® VNS-+dietary * Displays synergistic effects

interventions * Longer off-times may

increase VNS effectiveness

Sauer et al.* VNS+pharmacological

agents or biologics

Amplifies anti-inflammatory
drug effects, reduces
corticosteroid dose, and
improves outcomes
Abbreviations: CBT: Cognitive behavioral therapy; FDA: Food and

drug administration; TENS: Transcutaneous electrical nerve stimulation;
TM%nscranial magnetic stimulation.

6. Conclusion

This review highlights the potential of VNS as an effective
strategy for alleviating chronic pain. VNS has demonstrated
therapeutic benefits in conditions such as rheumatoid arthritis,
fibromyalgia, diabetic neuropathy, and migraines, representing
a revolutionary technique in chronic pain management. Its
analgesic effects are thought to be mediated through diverse
pathways, including the CAP, neurotransmitter modulation,
and suppression of microglial activation. nVNS has been
effective in alleviating pain in episodic migraines, cluster
headaches, and COVID-19-related headaches, though its
efficacy in chronic cluster headaches requires more research.
Experimental evidence also supports its role in reducing pain
sensitivity and enhancing recovery in stroke models. The non-
invasive characteristic of aVNS may broaden its applicability
across a wider range of diseases, while innovations in
engineering, precision neuromodulation, and equipment
development continue to improve therapeutic efficacy.

Despite these advances, challenges remain. Achieving
consistent outcomes and determining optimal dosing remain
obstacles, particularly in aVNS. Closed-loop aVNS systems
that personalize stimulation in real time using autonomic
markers, such as heart rate and respiratory rate, are essential
to meet individual physiological needs. nVNS represents a
promising step toward wearable devices for personalized
therapy. However, challenges such as limited sample size,
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placebo effects, and contradictory results highlight the
need for further research. Overall, VNS offers encouraging
outcomes for chronic pain management. Continue research
into combination therapies and technological innovations
is essential to maximize the potential of VNS and establish
novel, effective approaches for managing chronic and
complex pain conditions.
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