
Abstract

1. Introduction

Asthma, a chronic respiratory condition affecting approximately 
262 million people globally, continues to pose significant 
challenges in diagnosis and management.1 Conventionally, 
diagnosing asthma has relied heavily on clinical history, 
an approach that, while essential, often falls short of 
ensuring timely and accurate identification of the condition. 
Misdiagnosis or delayed diagnosis not only compromises 
patient care but also exacerbates the disease’s impact on health 
systems and societies across the globe. In the United Kingdom 
alone, asthma affects 5.4 million individuals and poses an 
annual economic burden of over £1.1 billion on the National 
Health Service.2 This includes costs from hospital admissions, 
prescription medications, and millions of general practitioner 
visits. Despite these substantial investments, preventable 
outcomes linger, with virtually 65,000 emergency asthma 
admissions and over 1,200 avoidable deaths reported 
annually.3 Severe asthma, which is culpable for more than 
half of asthma-related healthcare costs, adds to this strain, 

emphasizing the critical need for improved diagnostic and 
monitoring methods.

The challenges of asthma diagnosis are particularly 
pronounced in children, in whom it remains the most 
common chronic respiratory disease, affecting 11.9 million 
in the European Union alone.4 In pediatric cases, reliance on 
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clinical history often leads to misdiagnosis, either through 
overdiagnosis or underdiagnosis. Symptoms common to 
other respiratory conditions, such as viral infections, further 
complicate accurate identification. Overdiagnosis can result 
in unnecessary corticosteroid treatments, raising healthcare 
costs and exposing children to unwarranted side effects. 
Conversely, under-diagnosis leaves children vulnerable to 
unnecessary morbidity, poor quality of life, and increased 
mortality, especially in low-resource settings. Compounding 
the issue, traditional lung function tests are often too complex 
for young children, rendering clinicians without objective, 
child-friendly diagnostic tools. This underscores an urgent 
demand for accessible, non-invasive testing methods that can 
reliably distinguish asthma from other conditions.

Emerging technologies offer a beacon of hope in addressing 
these gaps. Advances in non-invasive diagnostic tools, such 
as breath analysis and carbon dioxide (CO2) capnographic 
data, provide innovative pathways for asthma diagnosis and 
monitoring.5 Volatile organic compounds (VOCs) in exhaled 
breath have been shown to correlate with airway inflammation, 
offering a real-time, personalized diagnostic approach.6 
Similarly, CO2 capnograms offer distinct patterns – healthy 
individuals exhibit square-shaped waveforms, while asthma 
patients show characteristic “shark-fin” waveforms – allowing 
for clear differentiation between asthmatic and non-asthmatic 
conditions.7 These tools are promising not only for accurate 
diagnosis but also for monitoring exacerbations, as deviations 
in waveform properties, such as angles and plateaus, can 
signify worsening conditions. Fractional exhaled nitric oxide 
(FeNO) is a well-established, non-invasive biomarker for 
assessing type 2 (T2) airway inflammation in asthma and is 
commonly used in clinical practice to support diagnosis and 
guide treatment decisions, particularly in cases of eosinophilic 
or steroid-responsive asthma. While the Exhale-Dx™ platform 
focuses on breath-based VOC profiling and capnographic 
analysis, it does not currently include FeNO measurement.

Other non-invasive measures of airway inflammation 
observed in asthmatic individuals include distinct physiological 
characteristics, such as higher airway temperature and 
altered humidity levels, compared to their non-asthmatic 
counterparts. This temperature elevation is linked to 
inflammatory processes, which generate heat as a byproduct 
of cellular activity in the airways. Furthermore, in more severe 
cases of asthma, where inflammation is more pronounced, the 
disparity in temperature becomes even more significant and 
is accompanied by a reduction in humidity.8 The decreased 
humidity can be attributed to airway narrowing and impaired 
mucosal hydration caused by inflammation, which hinders the 
natural humidification process during exhalation.

In addition to temperature and humidity, other non-
invasive parameters, such as pressure and airflow, play a 

vital role in characterizing airway function in asthmatics.9 
Studies have shown that individuals with asthma experience 
reduced airflow rates, particularly during expiration, due 
to the narrowing and obstruction of airways caused by 
bronchoconstriction and mucus buildup. This reduced airflow, 
measured as peak expiratory flow rate or forced expiratory 
volume in 1 s, provides a clear indication of airway restriction. 
Similarly, alterations in airway pressure dynamics can reflect 
the increased resistance encountered during breathing in 
asthmatic patients. These changes in pressure and flow are 
significant markers that help differentiate asthma severity 
levels and monitor disease progression. By leveraging 
these non-invasive biomarkers, clinicians can gain valuable 
insights into the underlying inflammatory and mechanical 
abnormalities in asthma.

The integration of advanced machine learning techniques 
has further revolutionized asthma diagnostics. Traditional 
models, such as support vector machines (SVMs) and random 
forests initially demonstrated potential but were often limited 
by their dependence on manual feature extraction and their 
inability to fully capture the complex, non-linear relationships 
inherent in patient data.8,10 Recently, deep neural networks 
have emerged as powerful tools for processing large, labeled 
datasets and identifying intricate patterns in clinical and 
demographic data. These models have shown impressive 
accuracy in asthma diagnosis; however, challenges remain, 
particularly regarding the need for extensive, high-quality 
datasets and their susceptibility to data variability in real-
world clinical settings.11,12

This study investigated a novel diagnostic framework, the 
Asthma Diagnostic Enhanced Neural Architecture (ADENA), 
designed to address limitations in present non-invasive 
asthma detection methods. The primary aim was to evaluate 
the ability of ADENA to process lung function and exhaled 
VOC data using deep learning algorithms for accurate asthma 
classification. The architecture incorporates an unsupervised 
learning component for feature extraction and is designed to 
function with limited and heterogeneous datasets, improving 
its applicability in clinical environments. By systematically 
evaluating model parameters, this research aimed to determine 
the diagnostic accuracy and computational efficiency of 
ADENA in both adult and pediatric populations.

In summary, the contributions of this paper are as follows: 
(i) A robust software algorithm is developed to reliably detect 
end-tidal plateaus, enabling reproducible and consistent 
biomarker measurements; (ii) By employing deconvolution 
analysis, ADENA provides nuanced insights into physiological 
differences between asthmatic and non-asthmatic profiles, 
uncovering critical diagnostic patterns; (iii) Through 
residual attention (RA) blocks and dynamic routing layers, 
the ADENA framework demonstrates superior diagnostic 
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precision compared to traditional models. (iv) ADENA is 
adaptable for pediatric use, demonstrating its versatility and 
applicability across diverse patient demographics.

2. Methodology

2.1. Data pre-processing

Exhale-DxTM leverages the sophisticated sensor array 
platform developed by Applied Nanodetectors Ltd and 
seamlessly integrates advanced nanotechnology with 
standard semiconductor processes. This integration enables 
high-volume production while maintaining the sensors’ high 
sensitivity and low power consumption. The sensors serve 
as both chemical biosensors and gas sensors, making them 
particularly suitable for real-time monitoring applications. 
Recognizing the critical need for standardized techniques in 
VOC breath analysis, Exhale-DxTM incorporates an innovative 
end-tidal collection method that ensures the precise capture 
of breath samples from alveolar air. By monitoring physical 
parameters and regulating breath sample collection in real-
time with fixed, controllable flow rates, the system guarantees 
accurate, consistent, and repeatable measurements.

The Exhale-DxTM platform records 13 distinct waveforms 
during exhalation, capturing a wide range of data, including 
various VOCs (such as isoprene, acetone, and ethanol), 
CO2 parameters, peak exhaled flow rate, and additional 

physical variables, such as temperature and humidity. These 
comprehensive data streams give valuable insights into 
respiratory health and facilitate precise asthma diagnostics.

The Exhale-DxTM device was rigorously tested on diverse 
age groups, including children aged six to 16 and adults aged 
16 and older, with independent evaluations validating its 
accuracy and efficacy across physiological differences between 
age groups.9,13 In each case, the patient performed the test 
three times within 5 – 10 min. This validation underscores the 
device’s reliability as a trustworthy tool for asthma diagnostics, 
demonstrating its applicability to users of all ages.

The diagnostic framework employed by Exhale-DxTM is 
illustrated in Figure 1. Principal component analysis (PCA) 
acted as a pre-processing step, reducing the dimensionality of the 
input space while preserving the most critical features relevant 
to asthma diagnosis. By removing noise and redundancies, 
PCA uncovered underlying patterns in high-dimensional data, 
highlighting the VOCs that were most significant for diagnostic 
purposes. Further analysis through deconvolution quantified 
the differences between asthmatic and non-asthmatic profiles, 
providing additional diagnostic insights.

Following this pre-processing stage, the ADENA model 
was applied. ADENA incorporates two advanced neural 
network components: Squeeze-and-excitation modules and 
RA blocks. These components enhance feature representation, 

Figure 1. The architecture of the proposed framework for classifying asthmatic and non-asthmatic individuals using 13 different breath parameters, 
including volatile organic compounds. Data preprocessing includes standardization, principal component analysis, and deconvolution (Decv). The 
processed data were then fed into the Asthma Diagnostic Enhanced Neural Architecture for training, guided by the proposed loss function.
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allowing the model to focus on clinically relevant data and 
improve diagnostic accuracy. By integrating these advanced 
neural blocks with unsupervised learning techniques, ADENA 
offers accurate, real-time asthma diagnosis even in the 
presence of sparse, noisy, or incomplete datasets.

This comprehensive framework, which combines Exhale-
DxTM’s cutting-edge sensor technology with advanced 
machine learning models, delivers a transformative approach 
to asthma diagnostics. It effectively differentiated asthmatic 
profiles, providing reliable and actionable insights that pave 
the way for improved asthma diagnosis and patient care.

2.2. Principal component analysis and deconvolution

Before being incorporated into the diagnostic model, the 13 
distinct waveforms underwent a standardization process to 
ensure uniformity and consistency throughout the dataset. This 
step was critical to the elimination of potential variability and 
discrepancies arising from differences in sampling conditions 
or measurement techniques. Once standardized, the waveforms 
were subjected to PCA, an essential pre-processing technique 
employed as part of an exploratory analysis. PCA served a dual 
purpose: reducing the dimensionality of the dataset and aiding 
in the optimization of hyperparameters for the selected deep 
learning algorithm. By distilling the waveforms into their most 
informative components, PCA not only enhanced computational 
efficiency but also provided a clearer understanding of the 
underlying data structure. Through dimensionality reduction, 
PCA isolated the most critical components in the data, 
assigning them higher weights in the model. These components 
represented the features most strongly associated with asthma 
diagnosis, ensuring the model being focused on the parameters 
that contribute most to diagnostic accuracy.

Following PCA, an additional layer of processing was 
applied through the deconvolution of breath biomarker signals. 
This step involved separating and quantifying each VOC 
present in the breath samples, allowing for a more detailed 
characterization of the biochemical markers associated with 
asthma. By deconstructing the composite signals into their 
individual components, deconvolution offered a more granular 
view of the biochemical processes underlying asthma. This 
enhanced the model’s ability to discriminate between asthmatic 
and non-asthmatic profiles, as well as between varying levels 
of asthma severity. This comprehensive pre-processing 
framework ensured that the model leveraged the most relevant 
features and biochemical signals, resulting in a more robust 
and accurate tool for asthma diagnosis.

2.3. Asthma diagnostic enhanced neural architecture

Principal component analysis functioned as a foundational 
component in the early layers of ADENA. It was used to 

analyze lung function parameters and biomarkers, assigning 
optimal weightings to the most informative features. By 
reducing the dimensionality of the input data, PCA eliminated 
noise and redundancies, ensuring that the model focused on 
critical patterns that differentiate asthmatic and non-asthmatic 
cases. This pre-processing stage enhanced the overall 
diagnostic accuracy and helped tune hyperparameters in the 
deep learning algorithm. The binary classification task in 
ADENA categorized profiles into two groups: asthmatic (1) 
and non-asthmatic (0).

The architecture began with an input layer that processed 
raw data from diverse biomarkers and lung function 
parameters. Convolutional layers follow, automatically 
detecting significant features and identifying patterns 
indicative of asthma. To further refine these patterns, squeeze-
and-excitation blocks dynamically recalibrated feature 
maps, prioritizing the most relevant biomarkers. These 
blocks amplified the model’s ability to focus on informative 
channels, improving its precision in distinguishing asthma-
specific characteristics. In addition, RA blocks enhanced 
the model’s sensitivity to subtle variations in lung function 
linked to asthma. By selectively attending to critical input 
regions, these blocks allowed the network to capture intricate 
patterns that might otherwise be overlooked.

X′ = σ(w * X+b) (I)
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E=σ(W2δ(W1zc)) (III)

RA = M(E).E (IV)

output = SAP (SD(DR(RA))) (V)

In these equations, X is the input, X’ is the convolution 
output, w is the convolution filter (weight), 𝑏 is the bias term, 
𝜎 represents the rectified linear unit function, S is the squeezed 
feature for the channel, Xc(i,j) is the input feature map at 
position (i,j), and 𝐻 and 𝑊 represent the height and width of 
the feature map. E is the excitation output, where W1 and W2 
are weight matrices, and 𝛿 is the sigmoid activation function. 
The excitation was then fed into the RA blocks, where M(E) 
represents the implementation of the attention mechanism.

Following this, the output of the RA blocks was fed into 
dynamic routing layers, modeled after capsule networks.14 
These layers improve contextual interpretation by preserving 
spatial hierarchies within the data. These layers permit the 
model to more accurately distinguish between asthmatic and 
non-asthmatic profiles by assisting it in identifying intricate 
patterns and relationships that conventional convolutional neural 
networks might overlook. Using stochastic depth for random 
layer skipping during training, the network employed fully-
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connected layers for final classification after the dynamic routing 
layers. This technique encourages the model to learn diverse 
feature representations. To further enhance generalization, 
spatial dropout layers were applied, randomly setting all feature 
maps to zero to prevent overfitting.15 Ultimately, a probability 
score (ranging from 0 to 1) was generated by a fully-connected 
layer using a sigmoid activation function, yielding the binary 
classification output: Asthmatic or non-asthmatic.

To train the ADENA framework, a comprehensive dataset 
comprising medical records, historical data, and clinician 
inputs was utilized. The model employed Adaptive Moment 
Estimation optimization algorithms to dynamically adjust the 
learning rate, ensuring efficient convergence during training. 
By incorporating advanced neural network components and 
optimization techniques, ADENA effectively identifies intricate 
patterns within the data, enabling precise asthma diagnosis.

The training process utilized a robust loss function 
designed to minimize discrepancies between predicted and 
actual outcomes. This custom loss function combined binary 
cross-entropy loss and focal loss to maximize performance. 
The focal loss component addressed class imbalances 
by reducing the weight of easily classified cases while 
emphasizing more complex ones, such as borderline asthmatic 
profiles. This allowed the model to focus on challenging cases, 
improving classification accuracy. Meanwhile, the binary 
cross-entropy loss component calculated the probability of 
predictions within a 0 – 1 range, penalizing misclassifications 
to refine the model’s sensitivity and accuracy.

LLoss= Lfocal + LBCE (VI)

Lfocal=−(1−pt)
γ log(pt) (VII)
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where, yactual is the actual data, ypredicted is the predicted 
value, N is the number of data points, pt is the predicted 
probability, and γ is the focusing parameter.

To validate the model’s reliability and ensure its 
generalizability, cross-validation techniques were applied 
during the initial development phase. Despite a relatively 
small initial dataset, the data were divided into subsets 
for iterative training and validation. This five-fold cross-
validation approach lowered the risk of overfitting, where 
the model became overly specialized to the training 
data, by evaluating performance on unseen data points. 
This process not only enhanced the model’s robustness 
but also provided valuable insights into its limitations, 
guiding future data collection efforts to support more 
comprehensive validation.

Extensive testing of the network was conducted under 
various configurations to identify optimal hyperparameters. 
Experiments included different learning rates (5.0 × 10−3, 1.0 
× 10−3, 1.0 × 10−4, 1.0 × 10−1, 1.0 × 10−2), epochs (200, 500, 
and 1000), batch sizes (2 and 4), and training dataset sizes. 
These tests were implemented using TensorFlow and Keras 
frameworks, and all models were trained on an NVIDIA 
P100 graphics processing unit with 24 GB of memory. This 
rigorous evaluation ensured the model’s adaptability and high 
performance, even under varying conditions.

3. Results

3.1. Datasets

The study cohort consisted of 45 patients, comprising 25 
women and 20 men, aged between 17 and 85 years. Of 
these, 20 individuals were asthmatic, actively managing their 
condition with medication prescribed following a diagnosis 
by their general practitioners. The remaining 25 participants 
served as a control group, with no known lung conditions 
or history of asthma. In addition, 20 younger patients aged 
six to 16 were included in the study, evenly split between 10 
asthmatic patients and 10 individuals without any known lung 
conditions. Furthermore, 20 additional patients aged 17 and 
older were tested in a blind study, including 11 individuals 
with asthma and nine without any known lung conditions.

The dataset was divided into three portions for model 
development: 60% for training, 30% for validation, and 10% 
for testing. This random allocation ensured a balanced approach 
to model evaluation and reduced the risk of bias. During the 
training phase, the model iteratively processed the training data 
over multiple epochs. For each epoch, the network performed 
a forward pass to analyze the input data and a backward pass 
to propagate errors, updating the model weights. This iterative 
process allowed the model to uncover intricate relationships and 
patterns within the data, essential for accurate asthma diagnosis.

The ADENA model was further enhanced by incorporating 
thousands of pre-defined parameter ranges derived from prior 
research and clinical feedback. These inputs provided a robust 
foundation for model training, ensuring the inclusion of relevant 
clinical insights. Certain parameters, identified as more critical 
for asthma diagnosis, were assigned higher weights during 
algorithm construction to prioritize their influence on the 
model’s predictions.13 This comprehensive training process 
ensured that ADENA could effectively learn from diverse data 
inputs and deliver reliable diagnostic outcomes.

3.2. Evaluation metrics

Several evaluation metrics were employed to assess 
the performance of the ADENA framework, including 
mean squared error (MSE), F1 score, receiver operating 
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characteristic (ROC) curve, area under the curve (AUC), and 
accuracy. The MSE was used to quantify prediction error by 
calculating the average squared difference between the actual 
labels yactual and the predicted probabilities ypredicted:

MSE
N

y yi
N

predicted actual= −( )=∑1
1

 

(IX)

This metric provides insight into how well the model 
predicts outcomes on a continuous probability scale. The F1 
score, a harmonic mean of precision and recall, was applied 
to evaluate the model’s balance between false positives (FP) 
and false negatives (FN). This is particularly critical in asthma 
diagnosis, where borderline cases can be easily misclassified. 
By capturing the trade-off between precision and recall, the 
F1 score highlights the model’s effectiveness in identifying 
challenging cases:

F Score Precision Sensitivity
Precision Sensitivity

1 2= ×
×
+  (X)

The model’s ability to discriminate between asthmatic 
and non-asthmatic cases was examined using the ROC 
curve and its corresponding AUC. These metrics illustrate 
the model’s performance across various threshold settings, 
providing a comprehensive evaluation of its discriminatory 
power. A high AUC indicates the model’s strong ability to 
distinguish between positive and negative cases. Finally, the 
overall correctness of the model was measured using accuracy, 
which calculates the proportion of correctly identified cases, 
including both true positives (TP) and true negatives. This 
metric reflects the model’s overall reliability in categorizing 
individuals as asthmatic or non-asthmatic.

Accuracy TN TP
TN FP TP FN

=
+

+ + +
 

(XI)

Together, these evaluation metrics offer a robust and 
multi-faceted assessment of ADENA’s diagnostic capabilities, 
demonstrating its effectiveness in accurately identifying 
asthma while minimizing errors.

3.3. Principal component analysis and deconvolution

The PCA reveals significant differences between individuals 
with asthma (yellow) and those without asthma (purple) 
when specific parameters are analyzed (Figure 2A). The 
results highlight distinct groupings and clusters, particularly 
within the asthmatic group, as evidenced by the red circles in 
Figure 2A. These groupings reflect the potential to identify 
various asthma phenotypes, indicating that VOC attributes 
are highly informative in diagnosing and categorizing 
different asthma endotypes. The PCA graphs illustrate CO2 
waveform traits on the x-axis and VOC characteristics on the 
y-axis, underscoring the importance of these parameters in 

distinguishing between asthmatic and non-asthmatic profiles. 
This reinforces the utility of incorporating all available 
parameters into the deep learning model, broadening its scope 
and improving its accuracy in classifying individuals based 
on their asthma status.

Our analysis of VOC data employed targeted metrics to 
provide a clear distinction between adults with and without 
asthma. Metrics, such as VOC plateau width and VOC 
maximum value play a critical role in identifying volatile 
compound emissions that differentiate the two groups. 
Figure 2B illustrates these differences, with the VOC 
maximum value and plateau width offering key insights into 
the separation of asthmatic and non-asthmatic profiles. This 
methodology enhances diagnostic accuracy and supports the 
identification of characteristic patterns in the data.

The deconvolution analysis further emphasizes these 
distinctions by quantifying differences in amplitude, mean, 
standard deviation (SD), and full-width half maximum 
(FWHM) across asthmatic and non-asthmatic groups 
(Figure 3, Table 1). At Order 0, asthmatics exhibited a 
207.14% higher amplitude and a 205.88% increase in mean 
compared to non-asthmatics, although the differences in SD 
(1.44%) and FWHM (1.69%) were minimal. At Order 1, 
the differences became more conspicuous, with asthmatics 
demonstrating dramatic increases in amplitude and mean, 
along with a substantial 236% rise in both SD and FWHM, 
indicating broader peaks and greater variability. By Order 2, 
asthmatics continued to show elevated values, including a 
97.33% increase in amplitude and moderate increases in mean 
(14.14%), SD (14.72%), and FWHM (14.64%).

Our analysis of VOC data for the pediatric group highlights 
clear distinctions between asthmatic and non-asthmatic 
profiles across key metrics, including amplitude, mean, 
SD, and FWHM (Figure 4, Table 2). At Order 0, asthmatic 
children exhibited an amplitude over 83,000 times higher and 
a mean 11,838% greater than non-asthmatic children. These 
results indicated sharper, more intense peaks in asthmatic 
profiles, reflecting significantly elevated volatile emissions 
compared to the control group. At Order 1, non-asthmatic 
children showed 250% higher amplitude and a mean value 
323% greater than asthmatic children, whose values approach 
baseline. Non-asthmatics also displayed broader peaks, with 
SD and FWHM increasing by 80% and 136%, respectively, 
further differentiating the two groups. At Order 2, asthmatic 
children again demonstrated stronger signals, with an 
amplitude 23% higher, although their mean was 68% lower 
than non-asthmatics. However, asthmatics exhibited far 
greater variability, with SD increasing by 354% and FWHM 
by 14% compared to non-asthmatics.

These findings revealed that asthmatics consistently 
displayed stronger signals, broader peaks, and greater 
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variability than non-asthmatics, especially in higher-
order analyses. This pattern underscores the efficacy of 
deconvolution and VOC analysis in enhancing the diagnostic 
framework, allowing for a more nuanced understanding of 
asthma phenotypes and facilitating improved diagnosis and 
management of the condition.

3.4. Comparative study

An extensive evaluation was conducted on the proposed model, 
ADENA, to determine the optimal hyperparameter settings, 
such as learning rates, batch size, epochs, and optimization 
algorithms. Through systematic experimentation, the batch 

size was set to four, balancing computational efficiency with 
accuracy. The learning rate and number of epochs were 
optimized to 5 × 10−4 and 200, respectively. These values 
produced the best results in a reasonable time frame, ensuring 
stable convergence throughout training.

The performance of the ADENA framework was compared 
against several deep learning architectures and traditional 
machine learning models, using metrics, such as accuracy, F1 
score, and MSE. Table 3 shows that ADENA outperformed 
its counterparts in asthma diagnosis. For instance, the SVM, 
a popular traditional machine learning model, struggled to 
provide consistent performance. It achieved 74.5% accuracy, 
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Figure 2. The distinctions in volatile organic compound (VOC) profiles between asthmatic and non-asthmatic individuals. (A) VOC graphs highlight 
differences in compound presence and intensity. (B) Principal component analysis (PCA) reveals clear separation between asthmatic (yellow) and non-
asthmatic (purple) groups, with red circles indicating potential phenotypic clustering among asthmatics.

A B

 Figure 3. Standardized volatile organic compound (VOC) profiles deconvoluted across three retention time orders and key signal characteristics.  
(A and B) Standardized volatile organic compound graphs deconvoluted across three different orders to highlight differences between asthmatic (A) 
and non-asthmatic adults. (C) Bar charts showing the average amplitude, mean, standard deviation, and full-width half maximum across asthmatic and 
non-asthmatic adults.

A B

C
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Table  3. Quantitative  results  of different models  compared  to  the 
proposed method  in  terms of  average accuracy, F1  score,  and 
MSE
Model Accuracy (%) F1 score MSE

SVM16 74.5 0.38 2.55
KNN17 95.6 0.93 0.43
LR18 82.2 0.53 0.64
ResNet19 97.1 0.95 0.21
MLP20 93.8 0.94 0.29
CART21 94.7 0.93 0.14
NB22 91.6 0.89 0.58
ADENA 98.7 0.98 0.065
Abbreviations: ADENA: Asthma diagnostic enhanced neural architecture; 
CART: Classification and regression tree; KNN: K-nearest neighbors;  
LR: Logistic regression; MLP: Multilayer perceptron; NB: Naive Bayes; 
ResNet: Residual network; SVM: Support vector machine; MSE: Mean squared error.

an F1 score of 0.38, and a relatively high MSE of 2.55, 
indicating poor generalization and difficulty in handling 
the data’s complex, non-linear relationships. In contrast, 
ADENA yielded outstanding results, with an accuracy of 
98.7%, an F1 score of 0.98, and a remarkably low MSE 
of 0.065, demonstrating its precision and dependability in 
distinguishing asthmatic from non-asthmatic profiles. This 
performance is attributed to ADENA’s advanced feature 
extraction and attention mechanisms, which enable it to detect 
subtle patterns in input data. Residual network (ResNet) 
outperformed other deep learning models, with an accuracy 
of 97.1% and an F1 score of 0.95. However, its MSE of 0.21 
remained significantly higher than that of ADENA, indicating 
that, while ResNet performs well, it lacks the precision and 

Table 1  . Quantitative  results  of deconvolution between 
asthmatic  (A) and non‑asthmatic  (NA) adults,  showing average 
amplitude  (AMP), mean, SD,  and FWHM
Order/class AMP Mean SD FWHM

0
A 0.00258 0.026 1.022 2.41
NA 0.00084 0.0085 1.0075 2.37

1
A 327.86 17.04 4.51 10.61
NA 0.0027 0.088 1.34 3.15

2
A 343.15 27.61 8.97 21.12
NA 173.91 24.18 7.82 18.42

Abbreviations: A: Asthmatic; NA: Non-asthmatic; AMP: Amplitude;  
SD: Standard deviation; FWHM: Full-width half maximum.

Table 2. Quantitative  results  of deconvolution between pediatric 
asthmatics  (A) and non‑asthmatics  (NA),  showing average 
amplitude  (AMP), mean, SD,  and FWHM
Order/class AMP Mean SD FWHM

0
A 643.18 15.52 3.51 8.26
NA 0.000774 0.13 1.31 3.17

1
A 6.02E-10 5.08E-09 4.96 11.68
NA 150.33 21.56 0.99 2.35

3
A 612.02 27.85 42.11 21.81
NA 497.99 16.56 9.26 19.18

Abbreviations: A: Asthmatic; NA: Non-asthmatic; AMP: Amplitude;  
SD: Standard deviation; FWHM: Full-width half maximum.
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Figure 4.  Standardized VOC profiles and statistical comparisons highlight differences in retention time and distinct signal characteristics between 
pediatric asthmatic and non-asthmatic individuals. (A and B) Standardized volatile organic compound graphs deconvoluted across three different orders 
to highlight differences between pediatric asthmatic (A) and non-asthmatic individuals. (C) Bar charts showing average amplitude, mean, SD, and 
FWHM across pediatric asthmatics and non-asthmatics.
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low error rates achieved by ADENA’s architecture. Similarly, 
the multilayer perceptron (MLP) and classification and 
regression tree (CART) models had similar F1 scores of 0.94 
and 0.93, with accuracies of 93.8% and 94.7%, respectively. 
However, their higher MSE values (0.29 for MLP and 0.14 
for CART) demonstrated ADENA’s ability to generalize 
more effectively and reduce prediction errors. The Naive 
Bayes (NB) classifier performed reasonably well, with an 
accuracy of 91.6% and an F1 score of 0.89. Nonetheless, 
its higher MSE of 0.58 suggests that NB struggles with the 
complexity and non-linearity inherent in asthma diagnosis, 
restricting its ability to produce consistently reliable results. 
To evaluate the model’s ability to distinguish between TPs and 
FPs, the AUC for the ROC curve was calculated (Figure 5). 
ADENA attained an AUC of 0.98, demonstrating its high 
discriminatory power and ability to accurately classify cases 
across a wide range of thresholds. These findings emphasize 
that ADENA’s architecture, which focuses on identifying 
subtle and complex patterns in data, is critical to achieving 
cutting-edge performance.

4. Discussion

The ADENA model outperformed traditional machine learning 
approaches and cutting-edge deep learning models in asthma 
diagnosis. To accomplish this, hyperparameters, such as batch 
size, learning rate, and number of epochs were carefully 
tuned. These settings enabled ADENA to deliver outstanding 
computational efficiency while producing highly accurate 
results. Notably, ADENA achieved an impressive accuracy 
of 98.7%, outperforming traditional models, such as SVM, 
which achieved only 74.5%. This significant improvement 
demonstrates ADENA’s reliability and precision in accurately 

identifying asthma profiles, making it an effective tool for 
clinical use.

ADENA’s F1 score of 0.98, which mirrors a well-balanced 
model that can reduce FPs and FNs, further supports its 
exceptional performance. This stands in stark contrast to 
the SVM’s F1 score of 0.38, highlighting the limitations of 
conventional approaches in managing complex diagnostic 
tasks. Furthermore, the model outperformed competing deep 
learning models, such as ResNet (MSE = 0.21) and MLP 
(MSE = 0.29), achieving an exceptionally low MSE of 0.065. 
These outcomes demonstrate ADENA’s strong generalization 
across datasets, producing accurate predictions even in 
the presence of non-linear data complexities. While deep 
learning models, such as ResNet performed impressively, 
with an accuracy of 97.1% and an F1 score of 0.95, ADENA’s 
sophisticated architecture, which included feature extraction 
methods and attention mechanisms, allowed it to attain lower 
error rates and superior overall performance. Similarly, models, 
such as MLP and CART yielded respectable accuracy rates of 
94.7% and 93.8%, respectively. However, their higher MSE 
values suggest that these models are less effective in identifying 
the nuanced, non-linear correlations present in asthma-related 
data, something that ADENA captures more accurately.

The deconvolution analysis showed distinct physiological 
differences between asthmatic and non-asthmatic patients 
across all measured parameters, offering a more comprehensive 
explanation for ADENA’s efficacy. At Order 0, asthmatics 
exhibited mean values 205% higher and amplitudes 207% 
greater than non-asthmatics, although the differences in 
FWHM (1.69%) and SD (1.44%) were negligible. These 
disparities were particularly pronounced at Order 1, where 
asthmatics showed notable increases in mean and amplitude, 
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 Figure 5. Model performance in distinguishing asthmatic from non-asthmatic cases is evaluated through diagnostic accuracy via ROC curve and 
classification outcomes summarized by the confusion matrix. (A) The receiver operating characteristic curve shows the model’s ability to differentiate 
between asthmatic and non-asthmatic cases, with area under the curve representing diagnostic accuracy. (B) Confusion matrix showing the summary of 
the model’s classification performance, displaying true positives, true negatives, false positives, and false negatives on the testing dataset.
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as well as a 236% rise in both FWHM and SD. This indicates 
broader peaks and more fluctuations in asthmatic profiles. At 
Order 2, asthmatics continued to display elevated values, with 
amplitude increasing by 97% and moderate increases in mean, 
SD, and FWHM. These results suggest stronger signals and 
wider peaks in higher-order analyses. However, a limitation 
of this study is the exclusion of patients with other obstructive 
airway diseases, such as chronic obstructive pulmonary 
disease (COPD). Given that capnographic abnormalities can 
appear in various forms of airway obstruction, future studies 
must include such groups to further evaluate the specificity of 
our model. In addition, we acknowledge that Exhale-Dx does 
not collect FeNO, which limits the present system’s utility, 
particularly in asthma phenotyping. However, the modular 
nature of the platform allows for the potential integration of 
FeNO sensing technology in future iterations, which could 
enhance its clinical utility in distinguishing T2-high from 
T2-low asthma endotypes.

This deconvolution analysis is critical for understanding 
the physiological patterns detected by ADENA’s feature 
extraction techniques. The significant variations in peak 
width, variability, and amplitude between the asthmatic and 
non-asthmatic groups underscore ADENA’s ability to capture 
subtle patterns that conventional models, such as SVM and even 
ResNet might overlook. These outcomes confirm the model’s 
potential to identify and classify different asthma phenotypes 
effectively. With an AUC of 0.98 in the ROC analysis, ADENA 
demonstrated strong discriminatory power in distinguishing TPs 
from FPs, further reinforcing its clinical value. Even with small 
datasets, ADENA’s high accuracy and low error rates indicate its 
promise for practical integration into healthcare systems, where 
accurate and reliable asthma diagnosis is essential.

5. Conclusion

The ADENA model has proven to be a highly effective 
and reliable tool for asthma diagnosis, outperforming both 
traditional machine learning and modern deep learning 
models. By combining optimized hyperparameters, advanced 
attention mechanisms, and feature extraction techniques, 
ADENA achieved exceptional performance, delivering an 
accuracy of 98.7%, an F1 score of 0.98, and a low MSE of 
0.065. The deconvolution analysis further confirmed the 
model’s ability to detect significant physiological differences 
between asthmatic and non-asthmatic profiles, particularly 
in terms of amplitude, variability, and peak characteristics 
across multiple orders. These findings demonstrate ADENA’s 
capability to capture complex, non-linear patterns, providing 
a reliable solution for non-invasive asthma diagnostics and 
phenotypic identification.

Future efforts will be directed at expanding the dataset 
to include a broader range of patient demographics, 

phenotypes, and clinical scenarios, thereby improving the 
model’s generalizability and robustness. ADENA will also 
be expanded to classify other respiratory diseases, such as 
COPD and bronchitis, further enhancing its clinical utility. 
Large-scale, real-world validation through clinical trials will 
be carried out to ensure its accuracy and practical integration 
into healthcare workflows. Finally, efforts to improve 
computational efficiency will allow for real-time predictions, 
paving the way for ADENA to become a transformative tool 
in respiratory disease diagnosis.
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