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1. INTRODUCTION

Inflammation is involved in the etiology of several 
bladder pathologies, including detrusor overactivity (DO) 
and urinary tract infections (UTIs). Inflammatory cell 
infiltration has been demonstrated in patients with DO [1,2] 
and, pyuria, the presence of white blood cells in the urine, 
is a characteristic finding in patients with UTI [3] and is an 
indicator of active infection [4,5]. Inflammation of the urinary 
bladder is commonly associated with symptoms, including 
urinary urgency, frequency, and pain in bladder filling [6]. 
While the underlying cause of these symptoms remains 
uncertain, the sensitization of bladder afferent nerves has 
been demonstrated in UTI [7], with inflammatory cytokines 
inducing hyperactivity of afferent nerves [8], and is proposed 
as a pathological mechanism for urgency [9].

One of the main signaling molecules known to activate sub-
urothelial afferent nerves is extracellular adenosine triphosphate 
(ATP) [10]. Much research over the last two decades has 

demonstrated the importance of extracellular ATP, released from 
the urothelial cell layer, during normal bladder stretch [11-13]. 
ATP has been shown to bind to purinergic receptors located on 
the sub-urothelial afferent nerves [14] and myofibroblasts [15] to 
signal bladder filling. Increased ATP release was demonstrated 
in tissue models of inflammatory bladder pathologies [16-18].
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The effect of ATP and other extracellular nucleotides 
(adenosine diphosphate [ADP], UTP, and UDP) is terminated 
by cell surface enzymes called ectonucleotidases [19]. For 
instance, CD39, an ectoATPDase important in inflammation, 
converts ATP to ADP, and ADP to adenosine monophosphate 
(AMP), with the release of an inorganic phosphate at 
each step in the pathway [20]. Little is known about the 
expression of ectonucleotidases in the bladder but mRNA 
of ectonucleotidases (CD39) has been found in cancerous 
urothelial cell lines [21].

Laboratory studies using human urinary tract epithelial cells 
demonstrated that a cocktail of pro-inflammatory cytokines 
(including interleukin-1 alpha, tumor necrosis factor-alpha 
[TNF-α], and interferon-gamma [IFN-γ]) were able to increase 
purinergic receptor expression in the urothelium [22], indicating 
an interaction between inflammation and the purinergic system. 
These cytokines have an important role in coordinating immune 
responses. Inflammatory cytokines can be produced by both 
immune cells, such as macrophages, and non-immune cells, 
such as urothelial cells [23].

Urinary levels of pro-inflammatory cytokines are increased 
under bladder conditions such as interstitial cystitis [24], overactive 
bladder [25,26], and UTI [27-30]. High amounts of interleukin-1 
beta (IL-1β) in urine are associated with bacterial cystitis 
[28,31,32]. In addition, IL-1β mRNA and protein expressions 
were increased following acute cyclophosphamide-induced 
inflammation in a rat model [33]. Elevated urinary concentrations 
of IFN-γ [25,29,30] and TNFα [28] have been reported in patients 
with UTI. There are variable reports of changes in IFN-γ in other 
inflammatory bladder conditions with either no change [34] or 
significantly increased IFN-γ mRNA expression [35] reported in 
biopsies from patients with bladder pain syndrome/ interstitial 
cystitis. TNFα  was elevated in response to lipopolysaccharide 
treatment in vitro [36]. It has been suggested that, in chronic 
inflammatory conditions, prolonged elevation of TNFα may 
predispose individuals to bladder cancer [37].

The aim of this study was to determine the concentration of 
three key pro-inflammatory cytokines, i.e., IFN-γ, TNF-α, and 
IL-1β, in urine collected from control women and women with 
DO, with or without UTI. The second aim of this study was 
to examine the effect of these pro-inflammatory cytokines on 
urothelial cell ATP release and breakdown. As inflammation is 
associated with symptoms of urinary urgency and frequency, 
it was hypothesized that cytokine treatment would enhance 
urothelial cell ATP release.

2. METHODS

2.1. Participant selection and recruitment

Patients were recruited from a single urogynecology 
clinic over a 12-month period with approval obtained from 

the Ethics Review Committee (HREC18/G/219 South East 
Sydney Local Health District). Sixty-five post-menopausal 
women over 50  years of age with urodynamically proven 
idiopathic refractory DO were recruited. Refractory DO was 
defined as persistent urinary urgency and urge incontinence 
symptoms despite lifestyle modification, bladder training, 
and two anticholinergics for more than 1 year in conjunction 
with urodynamic findings of DO. Age-matched controls 
were also enrolled (n = 30). These included women with 
pure stress incontinence or pelvic organ prolapse, without 
urge incontinence symptoms. Women were excluded from 
this study if they were diagnosed with neurological diseases 
(i.e. Parkinson’s disease/Multiple sclerosis), neurogenic DO, 
voiding dysfunction (defined as post-void residual >100 mL), 
interstitial cystitis/bladder pain syndrome, or any malignancy.

2.2.  Sample collec tion and urinar y c ytok ine 
measurement

Midstream urine samples were collected with careful 
labial toilets and refrigerated at 4°C immediately. Half of 
each sample was sent to the hospital microbiology department 
for routine culture. UTI was determined by the presence of a 
single bacterial species (>105 colony forming units/L), usually 
with pyuria >10 white blood cells/high power field [3]. All 
control patients were negative for UTI on the day of urine 
collection. The remaining half of the urine sample was 
centrifuged (160 g for 10 min) to remove exfoliated urothelial 
cells before being stored at −80°C.

Urinary cytokine concentrations were measured using a 
magnetic bead-based immunoassay kit (Bio-Plex Pro Human 
Th17 Cytokine Panel, Bio-Rad Laboratories Pty. Ltd, NSW 
Australia). Measurements were recorded on a Luminex-
MAGPIX® multiplex reader using Luminex xPONENT 
software. While this kit provided data on the concentration 
of 16 individual cytokines, results for IFN-γ, TNF-α, and IL-
1β are presented here. These three cytokines were selected 
for inclusion as they are core cytokines associated with the 
initiation of the innate immune response. They have been 
shown to impact urothelial purinergic expression [22] and are 
expected to be increased in patients with UTI [28].

2.3. Culture of urothelial cells

UROtsa cells (kindly provided by Dr. Catherine McDermott, 
Bond University, Gold Coast, Australia) were grown in low 
glucose Dulbecco’s Modified Eagle Medium (DMEM) 
supplemented with 1% glucose, 5% fetal calf serum, 100 units/
mL penicillin and 100 µg/mL streptomycin. Cells were incubated 
at 37°C (with 5% CO2 and 95% air) with the culture medium 
changed every 2–3 days. Cells were passaged when confluent 
(approximately 4–7 days) using 0.5% trypsin, incubated for 5 min, 
and subsequently plated into T-75 flasks for continuous passage 
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or 24-well plates used for experiments. The UROtsa cell line is an 
immortalized cell line originally isolated from a primary culture of 
normal human urothelia. The cells display morphology consistent 
with the intermediate layers of the in situ urothelium [38].

2.4. ATP release studies

Confluent cells, in 24-well plates, were grown in serum-free 
DMEM overnight before an ATP release experiment. Cells were 
pre-treated with cytokines (IFN-γ and TNF-α at 25 ng/mL, and 
IL-1β at 5 ng/mL; Sigma Chemical Co., St Louis, MO, USA) for 
10 min, 1 h, or 24 h. In some experiments, cells were pre-treated 
for 1 h with a cytokine cocktail, containing IFN-γ and TNF-α 
at 25 ng/mL and IL-1β at 5 ng/mL. Cytokine concentrations 
were chosen to match those described previously [22]. After 
pre-treatment, cells were washed three times with phosphate-
free buffer (120 mM NaCl, 20 mM HEPES, 5 mM KCl, 10 
mM glucose, 2 mM CaCl2, 1 mM MgSO4, pH 7.4) to remove 
culture medium which interferes with ATP measurements. ATP 
release was measured over 10 min in cells incubated in control 
(phosphate-free buffer) or hypotonic media (a 1:2 dilution of 
phosphate-free buffer with water) at 37°C. Ten minutes was 
chosen as the time point for ATP measurement as this has been 
used routinely for ATP determinations [39]. The concentration 
of ATP was quantified using a luciferin-luciferase assay (Sigma 
Chemical Co) as previously described [40].

2.5. Nucleotide breakdown studies

Confluent cells, cultured in 24-well plates, were washed 
three times with phosphate-free buffer and pre-treated for 
1  h with the chosen cytokines (IL-1β, IFN-γ, and TNF-α 
at 25 ng/mL). Following cytokine pre-treatment, cells were 
incubated with ATP, ADP, or AMP (at 100 µM) (Sigma 
Chemical Co.) in phosphate-free buffer for 30 min at 37°C.

Phosphate liberated from nucleotides was determined 
as previously described [46]. Briefly, equal volumes of cell 
supernatant and color reagent (containing 1% ammonium 
molybdite, 0.3 mM H2SO4, and 4% FeSO4) were mixed, 
and the absorbance at 750  nm was measured. Phosphate 
concentration in the cell supernatant was determined relative 
to a standard curve (KH2PO4, 10–150 nM) and results were 
expressed as the percentage of phosphate liberation compared 
to untreated (control) cells on the same plate [40].

2.6. Statistical analysis

Initial observations indicated that the concentrations of 
urinary cytokines were non-normal and positively skewed. 
Therefore, the log of the cytokine concentrations was used in all 
statistical comparisons. Comparisons between groups (control 
and DO or control and DO with UTI) were undertaken with a 
two-tailed unpaired Student’s t-test. For the cell culture studies, 

experimental design and number of replicates were determined 
from previously published work [39-41]. All experiments 
were conducted in triplicate with the mean ATP concentration 
or phosphate liberation in the three wells calculated. At least 
four replicate plates were examined for each treatment (n = 4).

The hypotonic stimulus was used as a positive control for 
ATP release. After the initial series of experiments (n = 20), 
normality was confirmed using a Shapiro-Wilk normality 
test (P = 0.59 for control and P = 0.42 for hypotonic). The 
effect of cytokines on control or hypotonic ATP release was 
analyzed by a two-tailed paired Student’s t-test compared to 
untreated UROtsa cells on the same 24-well plate.

3. RESULTS

3.1. Enhancement of cytokine release in women with 
bladder inflammation

Cytokines were detected in urine taken from controls 
(n = 30) and in women with DO, either with (n = 20) or without 
UTI (n = 45). The concentration of IFN-γ was significantly 
increased in DO women with UTI (Figure 1A, P = 0.015, 
Control 0.14 ± 0.07 pg; DO + UTI 0.44 ± 0.13 pg) and with DO 
without UTI (Figure 1D, P = 0.030, 0.85 ± 0.29 pg). Similarly, 
the concentration of TNF-α was significantly elevated in 
DO women with UTI (Figure 1B, P = 0.029, Control 0.34 ± 
0.06 pg; DO = UTI 2.33 ± 1.54 pg) and with DO (Figure 1E, 
P = 0.020, 0.64 ± 0.13 pg). The concentration of IL-1β was 
significantly higher in women with UTI (Figure 1C, P = 0.007, 
Control 0.06 ± 0.01 pg; DO + UTI 0.64 ± 0.27 pg) but not in 
women with DO (Figure 1F, P = 0.75, 0.13 ± 0.07 pg).

3.2. Effect of cytokines on urothelial cell ATP release

Treatment with neither IFN-γ, TNF-α nor IL-1β stimulated 
the expected increase in urothelial cell ATP release (Table 1). In 
contrast, pre-treatment of urothelial cells with IFN-γ (25 ng/mL) 
for 10 min significantly decreased ATP release in both control 
(Figure 2A, P = 0.0027) and hypotonic media (Figure 2D, P = 
0.0104). A 10-min pre-treatment with either TNF-α or IL-1β 
did not reduce ATP release in either control or hypotonic media 
(Figure 2). Similarly, pre-treatment of urothelial cells with 
cytokines for other time frames (1 h and 24 h) was unable to 
effect significant changes in ATP release induced by hypotonic 
media. A 1-h pre-treatment with IFN-γ significantly reduced 
ATP release in control cells (Table 1) and a 24-h pre-treatment 
with TNF-α significantly lowered control ATP release (Table 1).

3.3. Effect of a cytokine cocktail on urothelial cell ATP 
release

To determine if cytokines interact to elicit an increase in 
ATP release, urothelial cells were pre-treated with a cytokine 
cocktail [22]. In the control conditions, pre-treatment of urothelial 
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cells with the cytokine cocktail had no effect on ATP release 
(Figure 3A). However, the cytokine cocktail was able to stimulate 
a slight but significant increase in hypotonic-induced ATP release 
(Figure 3B, P = 0.022, untreated mean 100 ± 5.031 nM, cytokine 
cocktail pre-treated mean 111 ± 3.5 nM, n = 4).

3.4. Effect of cytokines on urothelial cell nucleotide 
breakdown

Pre-treatment of urothelial cells with cytokines enhanced 
nucleotide breakdown (Figure 4). A significant increase in the 

Figure  1. Enhanced release of cytokines into urine in women with detrusor overactivity (DO) with urinary tract infection (UTI) (n = 20, A-C) 
or DO (without UTI, n = 45, D-F) compared to control women (n = 30). IFN-γ (A and D) and TNF-α (B and E) were significantly increased 
in both patient groups. IL-1β was significantly increased in women with DO and UTI (C) but not in women with DO without UTI (F).  
Notes: *P < 0.05. Data represents mean cytokine concentration with standard error of the mean. IFN-γ: Interferon-gamma; IL-1β: Interleukin-1 beta;  
TNF-α: Tumor necrosis factor-alpha. 
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Figure  2. Adenosine triphosphate (ATP) release from untreated urothelial cells (○,●) and urothelial cells pre-treated with IFN-γ 
(A and D), TNF-α (B and E) or IL-1β (C and F) and for 10 min (,▼). ATP release was stimulated by control (A-C, open symbols) or hypotonic 
(D-F, filled symbols) media. ATP release significantly decreased in both control and hypotonic in cells pre-treated with IFN-γ (A and D).  
Notes: *P < 0.05, **P < 0.01 compared to untreated (0 ng/mL) cells (n = 4–8). Data represents mean ATP release with standard error of the mean.  
IFN-γ: Interferon-gamma; IL-1β: Interleukin-1 beta; TNF-α : Tumor necrosis factor-alpha. 
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Table 1. Effect of cytokine pre-treatment, for three different time frames, on urothelial cell ATP release
Pre-treatment 
duration

Cytokine treatment

IFN-γ TNF-α IL-1β

0 ng/mL 25 ng/mL 0 ng/mL 25 ng/mL 0 ng/mL 5 ng/mL

10 min
Control 58.9±8.9 31.3±3.7

(P=0.003)
30.0±3.9 26.7±2.3 30.3±3.1 28.0±4.4

Hypotonic 120.1±22.2 70.4±11.9
(P=0.01)

55.8±9.3 52.5±8.0 59.1±14.5 52.9±7.0

1 h
Control 68.2±8.3 49.8±3.3

(P=0.05)
20.8±2.4 27.3±11.7 20.9±0.8 22.3±2.0

Hypotonic 160±27.7 163.6±24.6 45.2±10.7 66.8±29.4 48.5±4.377 44.0±4.6
24 h

Control 33.68±6.8 29.0±1.8 66.7±9.1 53.3±9.2 
(P=0.04)

27.8±4.9 24.7±3.8

Hypotonic 68.06±9.6 73.6±4.0 115.3±21.0 90.1±13.1 52.3±6.4 52.0±4.0
ATP: Adenosine triphosphate; IFN-γ: Interferon-gamma; TNF-α: Tumor necrosis factor-alpha; IL-1β: Interleukin-1 beta.

Figure 3. Adenosine triphosphate (ATP) release from untreated urothelial cells (○,●) and urothelial cells pre-treated with a cytokine cocktail (IFN-γ, 
TNF-α and IL-1β) for 24 h (,▼). ATP release was stimulated by control (A, open symbols) or hypotonic (B, filled symbols) media. The cytokine 
cocktail stimulated a slight but significantly increase in hypotonic-induced ATP release compared to no cytokines (P = 0.02, n = 4). Data represents mean 
ATP release with standard error of the mean. IFN-γ: Interferon-gamma; IL-1β: Interleukin-1 beta; TNF-α : Tumor necrosis factor-alpha.

capacity of urothelial cells to breakdown ATP was observed 
following pre-treatment with all three of the cytokines, 
i.e., IFN-γ, TNF-α, and IL-1β) (Figure 4A, P < 0.05). IL-
1β pre-treatment also enhanced the breakdown of ADP 
(Figure 4B, P = 0.0083). None of the cytokines exerted any 
effect on AMP breakdown (Figure 4C).

4. DISCUSSION

Inflammation within the bladder is being increasingly 
recognized as an etiological factor of bladder pathology not 
only for UTI but also for refractory DO. Approximately, one-
third of the refractory DO patients recruited for this study 
were found to have a current UTI. This was comparable 
to a previous finding that 25–40% of patients with urge 
incontinence had underlying infection [42-45]. This study 

demonstrated the inflammatory cytokines IFN-γ and TNF-α 
were elevated in DO patients with and without UTI, and IL-1β 
was increased in DO patients with UTI. This may reflect the 
well-described priming of cells by bacterial products to induce 
IL-1β synthesis before its release [46].

The three cytokines examined in this study are all 
involved in the activity of the innate immune system. IFN‐γ 
is a critical coordinator of the innate and adaptive immune 
responses. IFN-γ modulates an array of immune responses, 
including activation of macrophages, promoting cytokine 
release from these cells [47]. However, interestingly, in 
terms of UTI pathogenesis, IFN-γ has been demonstrated to 
reduce macrophage phagocytosis of Escherichia coli [48], 
the most common causative organism of UTI. TNF-α is a 
major regulator of inflammation. In UTI, release of TNF-α 
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leads to rapid recruitment of innate immune cells, including 
neutrophils, into the bladder, and promotes clearance of 
uropathogenic bacteria and exfoliation of infected bladder 
urothelial cells [49]. IL-1β is one of the cytokines produced 
by activated macrophages. IL-1β, one of the most potent pro-
inflammatory cytokines, is elevated in UTI and is considered 
a marker of bacterial cystitis [32].

Urgency is thought to be mediated by activation of afferent 
sensory nerves following ATP release from the urothelium and 
it was hypothesized that pro-inflammatory cytokines stimulate 
ATP release [7,9]. At first glance, the current study showed ATP 
release was decreased in response to cytokine pre-treatment, 
and ATP breakdown was enhanced, which appeared to be in 
conflict with the known role of ATP in triggering urgency. 
However, this is not the only report of reduced ATP in the 
presence of an inflammatory stimulus. We have previously 
demonstrated a reduction in intravesical ATP in patients with 
DO and acute UTI [45]. This is in contrast to the reports of 
increased ATP release in human tissues obtained from patients 
with diseases such as interstitial cystitis/bladder pain syndrome, 
which are characterized by chronic inflammation. ATP release 
was also reportedly increased substantially in urothelial tissue 
strips collected from patients with painful bladder syndrome 
[16], while enhanced urothelial cell ATP release has been 
demonstrated in isolated cells derived from patients with 
interstitial cystitis [18]. This could possibly indicate that the 
acute response to inflammation, as seen in UTI, involves 
a decrease in ATP from the urothelium, or enhanced ATP 
breakdown while chronic inflammation, implicating multiple 
inflammatory cytokines and cells, could stimulate ATP release.

In this study, urothelial cells were treated with a single 
cytokine which was found to decrease urothelial cell ATP 
release and to enhance the breakdown of nucleotides, i.e., 
ATP and ADP, which would be expected to limit the effect 
of ATP as a stimulus for afferent nerve activity. However, 
in an in vivo inflammatory response, it is unlikely that a 
single cytokine would be released in isolation. The current 
study demonstrated that a cytokine cocktail, containing 

IFN-γ, TNF-α, and IL-1β, was able to induce a small 
but significant increase in urothelial cell ATP release, 
perhaps mirroring the results of previous studies that 
have shown an increase in ATP in other models of bladder 
inflammation [16-18].

It is also important to note that, in the current study, most 
changes in ATP release following pre-treatment with cytokines 
occurred in resting (control) and not the stretch-induced 
(hypotonic) condition. These results suggest that cytokines 
have a tendency to affect basal levels of ATP released from 
the urothelium and are possibly involved in mechanisms other 
than stretch-induced ATP release that initiates voiding. This is 
similar to findings that pyuria (presence of white blood cells 
in the urine) was associated with enhanced basal, but not 
stretch-evoked release of ATP in bladder biopsy specimens 
from patients with overactive bladder [50].

Another discrepancy between the current and past results 
is that the current study used an in vitro model of cell culture 
for the inflammatory stimuli. The aforementioned studies by 
Kumar et al. [16] and Smith et al. [17] involved more complex 
preparations in that they were undertaken with human bladder 
strips [16] or whole rat bladders [17]. In these models of 
chronic inflammation, the urothelial cell layer within the 
bladder wall would be exposed to inflammatory cells such 
as mast cells [51], as well as any inflammatory mediators 
and cytokines induced as part of the inflammatory response. 
Therefore, it is possible that augmented ATP release, as shown 
in these studies, requires the presence of other inflammatory 
cells that are absent from the single-cell model used. It is also 
possible that the increase in ATP release with inflammation 
described in the literature may not be coming directly from 
the urothelium but from other tissues within the bladder wall, 
such as sub-urothelial myofibroblasts or detrusor muscle cells, 
both of which can release ATP [51].

5. CONCLUSION

In conclusion, this study showed urinary concentrations of 
IFN-γ, TNF-α, and IL-1β were increased in women with DO 

Figure  4. The effects of cytokine pre-treatment on (A) adenosine triphosphate, (B) adenosine diphosphate, and (C) adenosine monophosphate 
breakdown by urothelial cells. Data represents percentage of phosphate (PO4) concentration compared to untreated urothelial cells (100%).  
Notes: *P < 0.05 or **P < 0.01 compared to untreated (0 ng/mL) cells (n = 11). Data represents mean PO4 percentage with standard error of the mean.
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with or without UTI. Furthermore, this study demonstrated that 
pre-treatment of urothelial cells with a single cytokine caused a 
decrease rather than an increase in urothelial cell ATP release as 
well as an increase in the breakdown of ATP and ADP. However, 
treatment of urothelial cells with a cytokine cocktail resulted in a 
small but significant increase in ATP release from the urothelium, 
suggesting that the interaction between the urothelium and 
inflammatory stimuli is complex and multifactorial.
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