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1. INTRODUCTION

Non-small cell lung cancer (NSCLC) represents the 
most common type of lung cancer and the leading cause of 
cancer deaths. NSCLC is a heterogeneous disease that mainly 
includes adenocarcinoma (AC) and squamous cell carcinoma 
(SCC) [1,2]. AC typically originates in cells that secrete mucus 
and other substances. It usually begins in the peripheral lung 
tissue, which refers to the outer areas of the lungs. SCC, on 
the other hand, typically starts in the squamous cells that line 
the inside of the airways in the lungs. It tends to be located 
centrally in the lung, often in the bronchi, which are the two 
main airways that branch off from the trachea (windpipe) 
to the lungs [3]. Timely and precise identification of lung 
cancer can make a significant difference in reducing mortality 
rates [4-6]. Low-dose computed tomography (LDCT) is now 
being used for screening lung cancer, which has been shown 
to reduce mortality [3]. However, over a quarter of patients 
screened with LDCT have indeterminate pulmonary nodules 
(PNs), with 4% of these cases diagnosed as lung tumors and 
over 95% being benign [3]. Patients with indeterminate PNs 
are often subjected to expensive and invasive biopsies and 
treatments, leading to significant morbidity and mortality. 
Clinical efforts have been made to distinguish malignant 
from benign PNs. The lung imaging reporting and data 
system has successfully reduced the false-positive rate by 

50%, significantly cutting down on unnecessary treatments 
and associated expenses [7]. Despite this improvement, 44% 
of patients still undergo invasive procedures with only a 5% 
chance of having malignancy. In addition, 35% of surgical 
resections are found to be benign. This highlights the unmet 
clinical need for developing biomarkers that can accurately 
distinguish between benign and malignant PNs.

We have previously developed separate sputum and 
plasma biomarker panels for lung cancer using non-
coding RNAs (miRNAs, lncRNAs, and snoRNAs), 
DNA methylation, and bacterial DNA methylation [8,9]. 
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Although showing promising, diagnostic performance of 
the individual types of molecular biomarkers is not sufficient 
to be used in clinical practice for distinguishing between 
benign and malignant PNs. Due to the heterogeneity of 
NSCLC, which develops from various molecular types, a 
single class of biomarkers tested in one sample type may 
not provide sufficient diagnostic significance for early lung 
cancer detection. In addition, biomarkers in sputum are 
derived from cells shed from the bronchial epithelium in 
the main bronchi or large airways, where SCC frequently 
occurs. Conversely, biomarkers in plasma are from flowing 
molecules discharged by lung tumors and free-floating 
cancer cells, rendering sputum biomarkers less sensitive 
for ACs, and plasma biomarkers less sensitive for SCCs. 
In this study, we determined if the integration of multiple 
molecular biomarkers can improve the separation of benign 
from malignant growths.

2. MATERIALS AND METHODS

2.1. Patient cohorts and research design

We conducted this study under the approval of the 
University of Maryland’s Institutional Review Boards (ethical 
approval code: IRB HP-00040666). Eligible participants were 
current and former smokers aged 50–80 with PNs detected 
through CT scan. PNs were defined according to standard 
clinical guidelines as nodules <3 cm in diameter identified 
on LDCT scans. We collected demographic and clinical data 
from medical records, including age, gender, race, and detailed 
smoking history. Malignant diagnoses were confirmed 
through pathological examination of tissues obtained through 
surgery or biopsy. Benign diagnoses were established either 
through specific pathological confirmation or by clinical and 
radiographic stability of the PNs over a 2-year follow-up 
period with multiple assessments.

2.2. Collection and preparation of specimens

In the collection of sputum, to decrease the proportion of 
oral epithelial cells, participants were instructed to clear their 
nasal passages, rinse their mouths thoroughly, and drink water. 
Sputum was harvested into sterile containers and managed 
in 1 h. Paque or solid parts were isolated with forceps. The 
samples were treated with PBS and dithiothreitol and then 
filtered. Blood was taken, and plasma was immediately 
prepared within an hour of collection using a standard clinical 
protocol, as described previously [9].

2.3. DNA and RNA isolation

DNA and RNA were purified using standardized protocols, 
with all samples promptly stored at −80°C for future use [8,9].

2.4. Droplet digital polymerase chain reaction (ddPCR) 
analysis of DNA methylation and bacterial DNA

To analyze DNA methylation, we performed bisulfite 
conversion on DNA using the Zymo EZ DNA methylation kit 
according to the manufacturer’s protocol. A 22 µL volume of 
PCR mix, including primers and bisulfite-treated DNA, was 
loaded onto a plate. We utilized the primers for RASSF1A as 
described in a cited study. The automated droplet generator 
(Bio-Rad) was used to prepare droplets of the PCR reaction, 
which were then transferred to a 96-well PCR plate. The 
plate was then placed in a thermal cycler for amplification, 
including the following steps: activation at 95°C for 10 min, 
denaturation at 94°C for 30 s, and annealing/extension at 
60°C for 1 min, repeated for 40 cycles, followed by a final 
extension at 98°C for 10 min. Following amplification, we 
put the plate in a Bio-Rad droplet reader and calculated the 
copy number of methylated DNA per microliter, by employing 
Poisson distribution analysis based on the fraction of positive 
reactions. To detect bacterial DNA, we used ddPCR following 
the method detailed in our previous study, utilizing specific 
PCR primers to amplify bacterial genera DNA. We combined 
20 µL of PCR reaction with 70 µL of droplet generation oil 
for probes (Bio-Rad) and generated droplets using the droplet 
generator. The amplification was carried out as described 
above. The ddPCR system’s software was employed for data 
acquisition, determining the concentration of DNA in copies 
per microliter using Poisson distribution analysis based on 
the fraction of positive reactions.

2.5. ddPCR analysis of miRNA, lncRNAs, and snoRNAs

To prepare cDNA from RNA, one µL of RNA was used 
for reverse transcription (RT) with the TaqMan miRNA RT Kit 
(Applied Biosystems, Foster City, CA) and gene-specific primers. 
For the ddPCR setup, a 20 µL reaction mixture was prepared, 
consisting of 5 µL cDNA, 10 µL Supermix, and 1 µL TaqMan 
primer/probe mix. This mixture was combined with droplet 
generation oil in a cartridge and processed using the QX100 
droplet generator. The resulting droplets were then transferred 
to a 96-well PCR plate. PCR amplification was conducted on a 
T100 thermal cycler with the following protocol: initial enzyme 
activation at 95°C for 10 min, 40 cycles of denaturation at 94°C 
for 30 s, annealing/extension at 60°C for 1 min, and a final 
enzyme deactivation at 98°C for 10 min. The concentration of 
the original target was accurately determined by analyzing the 
number of positive reactions using Poisson distribution. The 
Bio-Rad software facilitated data acquisition and calculated the 
target RNA concentration in copies per microliter.

2.6. Clinical models

We conducted an analysis to assess the accuracy of two 
clinical models, namely the Mayo Clinic model and the VA 
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model, in estimating the probability of NSCLC using a specific 
equation [10,11]. The Mayo Clinic model is characterized by 
the following equations: pre-test probability of a malignant 
PN = exp(x)/(1 + exp(x)) x = 26.8272 + (0.0391 * age) + 
(0.7917 * smoke) + (1.3388 * cancer) + (0.1274 * diameter) 
+ (1.0407 * spiculation) + (0.7838 * upper). The VA model 
is defined by the following equation: pre-test probability of 
a malignant PN = exp(x)/(1 + exp(x)) x = 28.404 + (2.061 * 
smoke) + (0.779 * age10) + (0.112 * diameter^2) + (0.567 
* yearsquit10).

2.7. Statistical analysis

To develop a panel of biomarkers for lung cancer, our cohort 
of cases and controls was randomly divided into two sets: a 
training set and a validation set, following the recommended 
guidelines of the National Cancer Institute [12]. The training 
set comprised 80% of the cohort to ensure a sufficient sample 
size for robust model development and parameter estimation. 
The remaining 20% formed the validation set, serving as an 
independent dataset for model evaluation and assessment of 
generalizability. Within the training set, feature selection was 
performed using the least absolute shrinkage and selection 
operator (LASSO) method on candidate biomarkers to 
develop a logistic regression model. In the logistic regression 
analysis, a constant term was used to represent the estimated 
log odds of the event (presence of neoplastic mass) when all 
predictor variables are zero. Coefficients were used to quantify 
the relationship between each predictor variable and cancer 
status. Positive coefficients indicated a positive association, 
while negative coefficients suggested a negative association 
with the event of interest. Lower p-values (<0.05) indicated 
stronger evidence against the null hypothesis, supporting 
the presence of a significant association. To evaluate the 
performance of the signature model, 10-fold cross-validation 
was employed during training, and validation was conducted 
using a separate validation set. Bootstrapping was utilized 
to randomly select multiple subgroups of the training set, 
reducing the impact of outlier data and training an ensemble 
model. Variable importance was assessed using the mean 
decrease in the Gini impurity, and the false discovery rate 
control was applied to adjust for multiple testing and identify 
differentially abundant biomarkers between the groups. For 
the specific selection of the lung cancer model, an empirical 
Bayes linear model was employed, considering clinical 
covariates. Discriminatory performance was evaluated using 
receiver-operator characteristic (ROC) analysis, with the area 
under the curve (AUC) reported along with 1000 bootstrap 
bias-corrected 95% confidence intervals. Confidence 
intervals for performance variables were calculated using 
various statistical methods. For AUC, methods such as the 
DeLong method or bootstrapping were used. Sensitivity and 
specificity were estimated using Agresti–Coull interval based 

on the binomial distribution. To assess the sensitivity of the 
signature to changes in the training cohort, cross-validation 
or bootstrapping techniques were employed. These rigorous 
evaluation methods involved repeatedly resampling the 
training data to assess the performance. The model acquired 
using the training set was further confirmed using the separate 
validation set for final analysis. In addition, a likelihood ratio 
test was conducted to compare our new signature model with 
our previous biomarker panels and the Mayo Clinic and VA 
Models in terms of performance and predictive accuracy.

3. RESULTS

3.1. Patients and controls

We recruited a total of 400 smokers with PNs for our study. 
Among the participants, 150 were diagnosed with neoplastic 
masses, while the remaining 250 had benign PNs. The benign 
PNs were further categorized based on their diagnoses: of 
125 patients with granulomatous infection, 73 demonstrated 
common infection, and 52 had other lung diseases. To 
facilitate the development and validation of our diagnostic 
tools, the entire cohort was randomly divided into two distinct 
sets: 80% of the patients were assigned to the training set 
and the remaining 20% were allocated to the validation set. 
Detailed demographic and clinical characteristics of these sets 
are presented in Tables 1 and 2, respectively.

3.2. The diagnostic performance of the individual plasma 
and sputum bacterial biomarkers for distinguishing 
between malignant and benign PNs

A total of 14 potential molecular biomarkers that were 
identified in our previous studies were analyzed in specimens 
of the cases and controls using ddPCR [8,9]. The 14 potential 
biomarkers included sputum miRNA-31-5p, sputum miRNA-
210-3p, sputum lncRNA-SNHG1, sputum lncRNA-H19, 
sputum lncRNA-HOTAIR, sputum snoRD66, sputum 
snoRD78, plasma miRNA-205-5p, plasma miRNA-126-5p, 
plasma lncRNA-SNHG1, plasma lncRNA-RMRP, sputum 
RASSF1A methylation, sputum Acidovorax biomarker, and 
sputum Veillonella biomarker (Table 3). ddPCR analysis 
of the ncRNAs, DNA methylation, and bacterial DNA in 
sputum and/or plasma created more than 10,000 droplets 
per well of plates. The sputum biomarkers, including two 
miRNAs, three lncRNAs, two snoRNAs, and two bacteria, 
displayed a different level in the training set of 120 patients 
and 200 controls (all P ≤ 0.05) (Table 3). The specific sputum 
biomarkers showed an AUC of 0.68–0.82, creating 62.1–
77.5% sensitivities and 58.8–87.0% specificities (Table 3). 
The sputum biomarkers demonstrated a strong association 
with SCC (all P ≤ 0.05) and showed higher diagnostic efficacy 
for SCC, with sensitivities ranging from 70.8% to 87.5% 
and specificities between 64.0% and 89.5%. In contrast, the 
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Table 1. A training cohort of subjects with neoplastic masses 
(NSCLC) and controls
Patient information NSCLC cases 

(n=120)
Controls 
(n=200)

P‑value

Age 66.29  
(SD 11.25)

65.38  
(SD 10.23)

0.30

Sex 0.29
Female 43 72
Male 77 128

Race 0.35
African Americans 38 64
White Americans 82 136
Smoking pack-years (median) 32.9 31.7 0.12
PN size (mm) 23.5±7.32 12.6±5.32 <0.01
The number of spiculated PNs 72 40 <0.01
The location of PNs in the upper lobe 62 108 0.32
The number of PNs with <20 mm 48 76 <0.01
The number of PNs with ≥20 mm 72 124 <0.01

Stage
Stage I 66
Stage II 23
Stage III-IV 31

Histological type
Adenocarcinoma 72
Squamous cell carcinoma 48

NSCLC: Non-small cell lung cancer; SD: Standard deviation; PNs: Pulmonary 
nodules.

Table 2. A validation cohort of subjects with neoplastic masses 
(NSCLC) and controls
Patient information NSCLC 

cases (n=30)
Controls 
(n=50)

P‑value

Age 66.82 
 (SD 11.35)

65.82  
(SD 10.56)

0.29

Sex 0.30
Female 11 18
Male 19 32

Race 0.32
African Americans 10 16
White Americans 20 34
Smoking pack-years (median) 34.7 32.8 0.27
Nodule size (mm) 24.3±7.61 12.7±5.26 <0.01
The number of spiculated PNs 18 10 <0.01
The location of PNs in the upper lobe 16 25 0.43
The number of PNs with <20 mm 12 31 <0.01
The number of PNs with ≥20 mm 18 19 <0.01

Stage
Stage I 16
Stage II 9
Stage III-IV 5

Histological type
Adenocarcinoma 18
Squamous cell carcinoma 12   

NSCLC: Non-small cell lung cancer; SD: Standard deviation; PNs: Pulmonary 
nodules.

diagnostic performance for AC was lower, with sensitivities 
of 59.7–70.8% and specificities of 56.0–84.5% (P < 0.05) 
(Table 4).

Plasma biomarkers, which included two miRNAs (miR-
205-5p and miR-126-5p) and two lncRNAs (SNHG1 and 
RMRP), exhibited significantly altered levels in patients 
with neoplastic masses compared to healthy controls (all 
P ≤ 0.001) (Table 3). Each of these biomarkers demonstrated 
an AUC between 0.71 and 0.80. Their diagnostic performance 
for detecting NSCLC showed sensitivities ranging from 
68.3% to 75.0% and specificities between 54.0% and 
82.9% (Table 3). Furthermore, the plasma biomarkers were 
significantly associated with AC (All P ≤ 0.05). Consequently, 
the plasma biomarkers had a higher diagnostic value for AC 
with 76.0–77.8% sensitivities and 56.0–86.0% specificities 
compared with SCC (58.3–70.0% sensitivities and 52.5–
78.0% specificities, all P < 0.05) (Table 4).

The analysis using logistic regression showed that plasma-
miRN-205-5p, sputum miRNA-210-3p, sputum lncRNA-
SNHG1, sputum lncRNA-H19, sputum snoRD66, sputum 
lncRNA-HOTAIR, sputum RASSF1A mutation, and sputum 
Veillonella were associated with smoking status (P < 0.05) 
(Supplementary Table S1). Plasma lncRNA-SNHG1, sputum 
miRNA-31-5p, and sputum miR-126-5p were related to 
patient gender (P < 0.05) (Supplementary Table S2). Sputum 
snoRD78 and sputum snoRD66 were associated with patient 
race (P < 0.05) (Supplementary Table S3). Sputum lncRNA-
SNHG1, sputum lncRNA-H19, sputum lncRNA-HOTAIR, 
sputum snoRD66, plasma lncRNA-RMRP, sputum RASSF1A 
methylation, and sputum Acidovorax were associated with 
chronic obstructive pulmonary disease (COPD) in patients 
(P < 0.05) (Supplementary Table S4).

3.3. An integromic signature for identifying malignant 
PNs

In addition to the molecular biomarkers, factors such as 
smoking history, the diameter and spiculation of the PNs, and 
their location in the upper lobes were also linked to malignancy 
(Supplementary Table S5). To develop a comprehensive 
diagnostic signature, we employed logistic regression models 
with constrained parameters. This model incorporated 
biomarkers, as well as clinical and radiological features, and 
was constructed using the LASSO method based on the ROC 
criterion. We identified plasma miR-205-5p, plasma miR-
210-3p, sputum methylation of RASSF1A, smoking pack-
year, and diameter of PN as the most informative predictors 
of cancer and used them to develop a prediction signature. 
The signature had a 0.97 AUC in distinguishing malignant 
from benign PNs (Figure 1A). Adding other biomarkers and 
imaging/clinical variables did not improve the performance 
of the signature for predicting malignant PNs. Furthermore, 
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Table 4. Performance of individual biomarkers
Biomarkers Diagnostic performance for AC Diagnostic performance for SCC Diagnostic performance for NSCLC

Sensitivity, % Specificity, % Sensitivity, % Specificity, % Sensitivity, % Specificity, %

Sputum miRNA-31-5p 59.7 84.5 75.0 89.5 65.8 87.0
Sputum miRNA-210-3p 70.8 75.0 87.5 82.0 77.5 78.0
Sputum lncRNA-SNHG1 66.7 69.5 79.2 76.0 71.7 73.0
Sputum lncRNA-H19 65.3 78.0 77.1 83.0 70.0 80.0
Sputum lncRNA-HOTAIR 68.1 69.0 77.1 73.0 71.7 71.0
Sputum snoRD66 69.4 83.5 75.0 89.5 71.7 86.0
Sputum snoRD78 69.4 67.0 81.3 74.0 74.1 70.0
Plasma miRNA-205-5p 75.0 71.0 75.0 70.0 75.0 71.0
Plasma miRNA-126-5p 75.0 69.0 58.3 64.5 68.3 66.5
Plasma lncRNA-SNHG1 75.0 56.0 60.4 52.5 70.0 54.0
Plasma lncRNA-RMRP 77.8 86.0 66.7 78.0 73.3 82.0
Sputum RASSF1A methylation 69.4 69.5 72.9 73.0 70.8 71.5
Sputum Acidovorax 59.7 79.0 70.8 82.0 62.1 79.0
Sputum Veillonella 62.5 56.0 79.2 64.0 69.2 58.8
AC: Adenocarcinoma; SCC: Squamous Cell Carcinoma; NSCLC: Non-small cell lung cancer.

Table 3. The individual biomarkers are relative/related to lung cancer
Biomarkers Coefficients P‑value AUC Sensitivity, % Specificity, % 

Sputum miRNA-31-5p 0.208 0.0100 0.819 65.8 87.0
Sputum miRNA-210-3p 0.167 0.0357 0.805 77.5 78.0
Sputum lncRNA-SNHG1 0.478 <0.0001 0.775 71.7 73.0
Sputum lncRNA-H19 0.486 <0.0001 0.786 70.0 80.0
Sputum lncRNA-HOTAIR 0.177 0.0423 0.715 71.7 71.0
Sputum snoRD66 0.349 <0.0001 0.798 71.7 86.0
Sputum snoRD78 0.410 <0.0001 0.762 74.1 70.0
Plasma miRNA-205-5p 0.339 <0.0001 0.766 75.0 71.0
Plasma miRNA-126-5p 0.337 <0.0001 0.708 68.3 66.5
Plasma lncRNA-SNHG1 0.366 <0.0001 0.725 70.0 54.0
Plasma lncRNA-RMRP 0.288 0.0001 0.799 73.3 82.0
Sputum DNA methylation, RASSF1A 0.350 <0.0001 0.717 70.8 71.5
Sputum bacterial biomarker, Acidovorax 0.321 <0.0001 0.716 62.1 79.0
Sputum bacterial biomarker, Veillonella 0.329 <0.0001 0.679 69.2 58.8
AUC: Area Under the Curve

several models that are based on only radiological and 
clinical characteristics of smokers have been developed for 
predicting the probability of malignant PNs, [10,11,13,14]. 
The diagnostic signature achieved an AUC of 0.97 in 
differentiating malignant from benign PNs (Figure 1A). 
Incorporating additional biomarkers, imaging, or clinical 
variables did not enhance the signature’s predictive accuracy 
for malignancy. In addition, multiple models focusing 
solely on the radiological and clinical features of smokers 
have been created to estimate the likelihood of malignant 
PNs, [10,11,13,14] of which, the Mayo Clinic model and 
VA model are commonly used ones. [10,11] We applied the 
models [10,11] in the training set. The Mayo Clinic model 
and VA model create AUCs of 0.82 and 81 (Figure 1A). The 
direct comparison of the two methods demonstrated that 
the integromic signature outperformed the Mayo Clinic 

and VA models, with a significantly higher AUC (0.97), 
sensitivity (89.2%), and specificity (94.7%) compared to the 
models (AUC 0.81–82, sensitivity 78.1–81.2%, specificity 
73.2–78.5%, P < 0.05) (Figure 1A). Moreover, there were no 
significant differences in the diagnostic performance of the 
biomarkers across different lung cancer types, but this was 
not the case for tumor stages. Consequently, the integromic 
signature demonstrated significantly lower sensitivity (83%) 
for stage I NSCLC compared to Stage II and Stage III-IV 
(88% and 92%, respectively) (P < 0.05) while maintaining 
a specificity of 95% (Figure 1B). In addition, the integromic 
signature showed a higher AUC for the diagnosis of lung 
cancer in larger nodules (≥20 mm) compared to smaller 
nodules (<20 mm) (0.98, 0.93, P = 0.043), resulting in 
significantly higher sensitivity (90.3%) and specificity 
(96.0%) for lung cancer detection in the larger nodules as 
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compared to the smaller ones (85.4%, 91.2%, all P < 0.05) 
(Supplementary Table S6).

3.4. Biomarker validation

The integromic signature was evaluated in a validation 
cohort comprising 30 cases and 50 controls. The results 
showed a comparable AUC (0.97) for diagnosing lung cancer, 
similar to that obtained in the training set (Figure 1A). The 
integromic signature demonstrated a 90.0% sensitivity and 
94.0% specificity, which were not significantly different from 
the performance observed in the training set. In agreement 
with the results in the training set, the signature was unrelated 
with cancer types (all P > 0.05) but dependent on tumor 
stages (P < 0.05). The signature demonstrated a reduced 
sensitivity for Stage I NSCLC compared to advanced stages, 
as indicated by a statistical significance of P < 0.05. Consistent 
with the results in the first cohort, the signature revealed a 
higher AUC for diagnosing lung cancer in larger nodules 
(≥20 mm) compared to smaller nodules (<20 mm). This 
difference resulted in a higher diagnostic sensitivity (89.0%) 
and specificity (95.0%) in larger nodules compared to smaller 
ones (sensitivity of 83.3% and specificity of 90.3%, P < 0.05) 
(Supplementary Table S6).

4. DISCUSSION

This study revealed that integrating various molecular 
biomarkers with patients’ smoking history and nodule size 
enhanced diagnostic accuracy compared to assessing a single 
biomarker type in isolation. Unlike plasma biomarkers, which 
are more specific to AC, and sputum biomarkers, which are more 
specific to SCC, this combined analysis transcends NSCLC 
histological differences. Furthermore, the signature outperformed 
established clinical models, offering greater diagnostic value.

The integrated signature includes miR-205-5p, miR-
210-3p, RASSF1A, and Veillonella. Alterations in miR-
205-5p facilitate tumorigenesis by regulating TP53INP1, 
RB1, and P21 [15-19]. miR-210-3p can promote lung 
cancer development and metastasis by disrupting USF1’s 
activation of PCGF3, providing insights into the underlying 
mechanisms of lung cancer progression [20]. Abnormal miR-
210-3p expression in body fluids can be used to diagnose 
various types of malignancies [20-26]. RASSF1A, a tumor 
suppressor gene, is frequently inactivated by promoter 
hypermethylation in lung cancer, leading to uncontrolled 
cell proliferation and reduced apoptosis [27-32]. Bacterial 
infections may contribute to the development and progression 
of lung cancer [33-44]. Our earlier research revealed that 
bacterial infections could promote tumorigenesis by 
activating NF-kB pathways through the binding of PspC to 
PAFR [45]. Recently, we have demonstrated that analyzing 
the presence of Acidovorax and Veillonella in sputum 
samples could enhance lung cancer detection [46]. In this 
study, we found that the combined use of Veillonella with 
ncRNA and DNA methylation had complementary function 
to improve the diagnosis of NSCLC.

This study offered important insights while also pointing 
out the need for further investigation. One limitation is the 
relatively small sample size, especially in the validation 
cohort. To address this, we intend to initiate a new study aimed 
at prospectively validating these biomarkers for early lung 
cancer detection in a larger population. Although our current 
analysis considered multiple variables, additional stratification 
could yield more in-depth understanding. We will analyze the 
performance of the signature specifically in subgroups based 
on smoking status, COPD presence, and nodule size to refine its 
diagnostic accuracy and clinical application. The sensitivity of 

Figure 1. The signature in distinguishing malignant from benign PNs. (A) ROC curves showing the accuracy of the signature and Mayo Clinic and VA 
models for diagnosing malignant PNs. The signature produced an AUC of 0.97 in the training and validation sets, with a higher AUC value than the 
Mayo Clinic model and VA model. (B) The signature exhibited lower sensitivity for Stage I NSCLC (83%) compared with Stage II and Stage III-IV 
(88% and 92%) while having 95%. 
PNs: Pulmonary nodules; ROC: Receiver-operator characteristic; AUC: Area under the curve; NSCLC: Non-small cell lung cancer
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the signature was significantly better for advanced lung cancer 
stages and larger tumors, suggesting current findings are more 
applicable to advanced and larger cancers. We are validating 
these biomarkers in the context of LDCT screening for smaller 
nodules and focusing on identifying additional biomarkers 
specific to early-stage disease. The critical role of smoking 
cessation in lung cancer prevention and early detection, as 
well as the potential benefits of biomarkers, will also need 
to be investigated. The patients with malignant nodules were 
selected from a clinical series, resulting in larger nodule sizes 
compared to those typically detected through screening. We 
will further validate the biomarkers in screening contexts to 
ensure applicability to smaller, screening-detected nodules.

5. CONCLUSION

We created a signature by combining biomarkers with 
clinical and radiological features to distinguish lung cancer in 
patients with PNs. This signature has the potential to reduce 
unnecessary invasive procedures for individuals with benign 
nodules while ensuring timely and appropriate therapy for 
those with NSCLC. To standardize this diagnostic assay, 
we need further validation in larger multi-center cohorts, 
regulatory approval, and a streamlined workflow for sample 
processing and analysis, in collaboration with clinical 
laboratories and regulatory bodies.
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