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1. INTRODUCTION

Characterized by uncontrolled,  abnormal cell 
proliferation and spread to other tissues and organs, 
cancer is a heterogeneous disease caused by random 
somatic mutations. Classification of cancer subtypes based 
on their characteristics is conducive to cancer research. 
Current classification methods commonly rely on gene 
expression data [1]. Prior studies showed that identifying 
and addressing cancer at its initial stages can avert about 
30 – 50% of cancer-related fatalities [2]. In recent years, 
precision medicine has made significant progress, in 
general, and in oncology, in particular. Researchers have 
evaluated drug efficacy using established cancer cell lines 
in laboratory settings. They now incorporate genomic 
data, gene expression analysis, and cheminformatics to 
predict how patients may respond to specific treatments. 
Considering each patient’s distinct genetic and molecular 
profiles, it is of great importance to personalize medical 
therapies for each patient [3].

Thanks to the development of computer-aided technology, 
machine-learning techniques have substantially improved 
detection and prediction accuracy [4]. For instance, molecular 
biomarkers can help oncologists determine the treatment 
intensity of an individual patient. Based on the disease profile 

of a particular patient group, predictive biomarkers can be 
used to adjust the intensity of therapies. Moreover, predictive 
biomarkers can help clinicians select the optimal treatment. 
In contrast, routine managements cost more, last longer, 
and require more tissues since numerous related molecular 
biomarkers have to be determined, such as in the cases of 
non-small-cell lung cancer [5].

Gene expression data from tumor tissue samples 
can be used to determine if molecular factors contribute 
to the progression of a disease or influence a patient’s 
survival. Efficient data extraction allows for control over 

Gene expression data are used to discover meaningful hidden information in gene datasets. Cancer and other disorders may 
be diagnosed based on differences in gene expression profiles, and this information can be gleaned by gene sequencing. 
Thanks to the tremendous power of artificial intelligence (AI), healthcare has become a significant user of deep learning (DL) 
for predicting cancer diseases and categorizing gene expression. Gene expression Microarrays have been proved effective in 
predicting cancer diseases and categorizing gene expression. Gene expression datasets contain only limited samples, but the 
features of cancer are diverse and complex. To overcome their dimensionality, gene expression datasets must be enhanced. 
By learning and analyzing features of input data, it is possible to extract features, as multidimensional arrays, from the data. 
Synthetic samples are needed to strengthen the range of information. DL strategies may be used when gene expression data 
are used to diagnose and classify cancer diseases.
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diagnostic mechanisms, improving prognosis and increased 
significance [6]. It is estimated that nearly ten million people 
die of cancer each year. As a result, clinical practitioners, 
patients, researchers, and policymakers all attach great 
importance to survival prediction. Still, such prediction tends 
to be highly subjective and is subject to clinicians’ intuition; 
therefore, it can only achieve limited accuracy [7].

Bioinformatics addresses health-care-related problems 
by applying computational techniques to process biological 
data. The expression of genes within a human cell can 
be determined by using RNA sequencing (RNA-seq) or 
Microarray/DNA Chip. Many samples from various types 
of cancers have been analyzed, and the corresponding data 
have been shared with the public. The Cancer Genome Atlas 
(TCGA) and the International Cancer Genome Consortium 
database are two databases. Public databases for these kinds 
of studies include Stanford Microarray, GenBank, Array 
express, gene expression omnibus (GEO), and the National 
Center for Biotechnology Information [8].

Aside from studying the entire human genome, next-
generation sequencing (NGS) can identify various genomic 
alterations. With these techniques, several limitations associated 
with microarray experiments for determining gene expression 
have been overcome [9]. By utilizing NGS techniques [10], it 
is possible to detect both coding and non-coding RNA to study 
the entire human genome. Advances in structural genomics 
have made it possible to study the whole human genome. 
DNA methylation is a promising biomarker for detecting 
and classifying cancer. It involves some activities, including 
imprinting of genomic DNA, inactivating X-chromosomes, 
and suppressing transcription and transposition of repetitive 
elements [11]. Although total RNA sequencing can be used for 
cancer diagnosis, the complexity of the data involved makes it a 
tremendous challenge for traditional machine-learning techniques 
to evaluate genetic variants. For this reason, a high-dimensional 
dataset requires more data for analysis each time. Information 
is maintained when various variables (or features) are projected 
onto a smaller number, but processing takes weeks [8].

One can determine the relationships between biological 
molecules in an organism and identify the different types of 
cancer by analyzing Omics data. Because of the relatively 
small amount of available samples and the high number 
of features, genomic data are difficult to interpret. The 
accuracy of gene expression prediction in clinical applications 
remains to be improved. Several studies have suggested that 
gene expression may help predict breast cancer recurrence 
and metastasis. Redundant, noisy, and irrelevant data 
are expected in gene expression values, including non-
reproducible, overfitting, noisy, and non-reproducible results. 
Two approaches, namely feature selection (FS) and feature 
extraction, address these issues.

Semi-supervised, supervised, and unsupervised methods 
are among the most popular informative FS types for retrieving 
biological data. FS strategies often combine ensemble-, filter-, 
embedded-, and hybrid-based models [12].

Since gene expression data have grown exponentially, 
several approaches for analyzing and diagnosing cancer using 
machine learning have been introduced. These methods use 
gene expression data to classify samples according to their 
predicted survival status by analyzing their gene expression 
data. Classical machine learning methods, such as the Cox 
proportional hazard model and the support vector machine 
method have been widely applied to predict and diagnose 
cancer [13].

Due to its high-dimensional, heterogeneous, and complex 
nature, deep learning (DL) can be helpful in the discovery of 
biomarkers, categorization of patients, genomic analysis, and 
sequencing. A suitable kernel for current methods has not yet 
been established [14]. In general, gene expression datasets are 
subject to problems, such as small datasets, high dimensionality, 
and unbalanced data, and identifying significant genes can be 
addressed by gene selection. Furthermore, high dimensionality 
or multidimensional arrays refer to data structures that are 
beyond the typical one or more than two dimensions. Difference 
analysis is the most common method for determining gene 
significance, but it can be challenging when the data set is 
small and of high dimension [15]. A DL -based approach is 
proposed instead of a statistics-based approach with a “hard” 
cutoff to reduce feature information loss. Image processing, 
voice recognition, natural language processing, and chemical 
pattern recognition are among the applications of DL that have 
been developed in recent years. Cancer prognostication has also 
been predicted to use DL, but prognostic genes have been less 
studied for this purpose [16].

2. GENETICS OF CANCER

Inheritance or acquisition of at least one genetic alteration 
causes cancer cells to multiply uncontrollably. Gene-encoding 
proteins associated with cell cycle or DNA recovery systems 
may be affected when cancer-causing gene changes interfere 
with the replication and life-cycle of normal cells. Whenever 
oncogenic signals are corrupted, genomic instability results, 
and tumor cells are more likely to develop genetic mutations, 
and further cause tumor growth and spread [17].

A genetic mutation causes an uncontrollable growth of 
cells and leads to cancer. This mutation disrupts genes that 
control cell division and DNA repair, thereby resulting in 
genomic instability, facilitating tumor growth, and metastasis 
by establishing oncogenic signaling pathways.

Cancer cells can increase in number when one or more 
genetic changes occur. Lifespan is shortened due to changes 
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in deoxyribonucleic acid production when genes associated 
with cell proliferation are eliminated. Cancerous traits can be 
induced by altering its signaling pathway, leading to genomic 
instability [17].

Cancer-related genes and non-cancer-related genes are 
two types of somatic genes contributing to oncogenesis 
and tumor progression. Proto-oncogenes are characterized 
by their ability to generate novel proteins that, through 
biochemical cascades and bio-cellular processes, control 
cell division, prevent differentiation, or delay apoptosis. In 
addition, increased expression of a proto-oncogene leads 
to the formation of an oncogene, which can be triggered 
by changes or magnification of a gene (multiple copies) 
(e.g., human epidermal growth factor receptor 2 and RAS). 
A tumor suppressor gene or gatekeeper gene is another gene 
that is commonly altered in cancer cells’ genomes (i.e., 
BRCA1, BRCA2, p53, or TP53) [18]. On the other hand, 
proto-oncogenes transform when their functions are altered 
[19]. In contrast, tumor suppressor genes handle oncogenesis 
when their wild-type copies are inactivated or lose function.

Aberrant gene silencing and activation because of 
epigenetic defects is a simplified model of genomic 
instability [20]. Hassanpour and Dehghani identified epigenetic 
changes to the DNA structure without altering its sequence 
directly. This study found mutations in transcription factors 
and non-coding RNAs, which regulate gene expression and 
repression and modulate various biological processes [21]. 
The DNA writer or the DNA eraser is a protein that recognizes 
DNA or histones altered by transferring or removing chemical 
groups. The reader is a protein that recognizes DNA or histones 
that have been changed. Thus, there is evidence for epigenetic 
diversity at the cellular level, since tumor cells display a 
spectrum of histone modifications both throughout the genome 
and within specific genes. Therefore, tumor genesis may result 
from a combination of epigenetic events [22].

New ways of diagnosing, categorizing, and treating cancer 
have emerged as a direct result of the advances in sequencing 
and understanding human genes. To evaluate the efficacy of 
targeted therapies, such as receptor tyrosine kinase inhibitors, 
knowledge about the disorder processes and the role of 
genetic variations in oncogenesis is essential. Cancer cells can 
experience a significant change from their original forms when 
a line of cells spreads and multiplies. As a cancer cell replicates, 
its genome will continue to change, and since it differs from 
its original genome, genetic mutations will accumulate. For 
a tumor to become heterogeneous, the cells in the primary 
cancer and the secondary multicellular clusters acquire new 
accumulated genetic modifications and become different 
in terms of their genetic composition as the tumor grows. 
Using tumor molecular profiling, specific genetic changes 
throughout the disease course can be identified to screen out 

effective targeted agents and detect drug resistance of tumors. 
Apoptosis impedes proliferation, and truncated differentiation 
and truncation are challenging to determine. By combining or 
modifying several genes, a single aberrant cell may develop 
into a full-blown, aggressive, invasive cancer [23].

Revolutionary new technologies are expected to lead the 
way in new modes for the prediction of genetic risk for cancer. 
Novel cancer susceptibility genes have been developed to help 
clinicians and researchers to “diagnose” previously undetected 
familial cancers through high-throughput screening. Turnbull 
et al., by work using high-throughput screening, demonstrated 
that the genomic organization of those prevalent tumors was 
much more complicated than was previously thought [24].

A system biologist can analyze biological events by 
considering a network-based system of interconnected 
parts. Such parts may include many diverse molecular and 
environmental elements that interact with each other on a 
variety of levels. Some examples of genetic variants impacting 
tumor activity include expression levels, protein motifs, 
and cellular networks. DNA and protein interaction failures 
in cancer cells’ replication, transcription, metabolism, and 
signaling networks are crucial [18,25]. A schematic figure of 
cancer genetics has been illustrated in Figure 1.

3. TECHNOLOGICAL ADVANCES BASED ON 
GENOME

3.1. The sequencing of RNA

Recently, various approaches to RNA sequencing, 
including short-read, long-read, and direct RNA sequencing, 
as well as long-read complementary DNAs (cDNAs) and 
direct RNAs, were detailed. A paper expanded on short-read 
and long-read sequencing and direct RNA sequencing [26].

Figure 1. A schematic illustration of cancer genetics
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Due to its higher quality data through the transcriptome 
and its lower cost, short-read cDNA sequencing is more 
affordable and more accessible for the application in the 
expression of RNA genes than Microarrays. In identifying 
and quantifying different isoforms, errors may appear during 
sample preparation and computational analysis, leading to 
false results. It is important to remember that the accuracy 
of genome mapping depends on the assembly of short RNA 
fragments as part of short-read sequencing. Using long-read 
sequencing, one can map the genome of mammalian cells 
whose transcripts are at least 1 – 2 kb but may exceed 100 kb 
since the sequencing software can identify large amounts of 
RNA and process it in its entirety. Errors caused by cDNA 
amplification and RNA-RNA chimeras may be avoided with 
long-read RNA sequencing (also known as dRNA-seq) since 
it does not involve the synthesis of cDNA. ONT developed 
this technique for this purpose [26, 27] and other nano pore 
sequencing techniques.

3.2. Gene expression arrays

Several genes expressed in cancer were first identified using 
microarrays created from spotted DNA amplifications from 
cDNA clones. Whole genome screens were developed when 
cDNA clones with sequence verification became available [28]. 
Identifying genes whose expression levels were influenced 
by subtle changes in phenotypes with the commercial arrays 
was difficult. Developing an oligonucleotide platform was 
motivated by the difficulties associated with the production 
and interpretation of cDNA arrays, which provide valuable 
information about genetic changes in cancer. The company 
developed unique sequences using oligonucleotide-based 
expression arrays through photolithography representing 
human genes on quartz wafers. Proprietary software with 
built-in smoothing and normalizing controls was used to 
calculate hybridization intensity. Over 55,000 probe sets 
represent over 20,000 genes on the U133Plus2 arrays. The 
complexity of these arrays has increased since the first 6800 
transcripts were fully characterized, thanks to the higher 
quality of transcript databases. Quality control indicators can 
assess sample preparation. Repeat hybridization can reduce 
false discovery rates. Oligonucleotide array data processing 
has advanced dramatically. It is now possible to evaluate 
gene expression levels and investigate cancer development 
in various ways through oligonucleotide arrays [29]. These 
arrays are increasingly accessible and commercially available. 
One can determine how genes are expressed and deleted in 
cancer cells as part of an array. Much cancer research uses 
gene expression profiles, including comparing gene expression 
profiles across tumors at different stages of progression and 
comparing tumors with normal tissues to determine if gene 
expression changes [29,30].

3.3. An overview of data sources

RNA sequencing data and correlated clinical data of 
breast cancer patients can be downloaded from TCGA 
website (https://cancergenome.nih.gov/). From Xena 
Functional Genomics Explorer (https://xenabrowser.net/) 
clinical data from patients in the TCGA database can be 
downloaded, including progression-free survival and overall 
survival (OS) [31]. A transcriptome profile of a carcinoma 
sample and a standard sample could be obtained using 
TCGA. The GDC Data Transfer Tool (https://gdc.cancer.
gov/access-data/gdc-data-transfertool) allowed for the 
generation and download of lncRNA sequencing data and 
clinical information [32].

A search of the largest libraries of gene expression 
data (e.g., GEO, ArrayExpress [33], and Oncomine [34] 
may help identify data generated using high-throughput 
methods (e.g., Microarrays, RNA-Sequencing). Finding 
those datasets within these repositories matched by specific 
search criteria is also possible. The data from ArrayExpress 
overlapped with those of GEO, which had already been 
identified, can also be retrieved [35] because ArrayExpress 
maintained a copy of all GEO datasets. Creating an account 
with Oncomine allows researchers to conduct dataset 
searches for free. Furthermore, included in the selected 
datasets from GEO are gene transcriptomes as well as 
genome-wide DNA methylation expression data in the tumor 
tissues and normal controls.

As a bonus, there is an application, Geo Cancer Prognostic 
Datasets Retriever, which is available for free on CPAN and 
GitHub and can be accessed through CPAN or GitHub for 
retrieving multiple gene expression datasets that predict the 
outcome of a specific cancer type from the GEO. Alameer and 
Chicco laid the foundations for several bioinformatic studies 
and meta-analyzes that could significantly impact oncological 
research [36].

3.4. Process of genome data analysis

3.4.1. In a nutshell, what is big data?

Gene expression data are characterized by three facts: 
(1) they are of high dimensionality (over a thousand genes), 
(2) the public data are relatively small, with just a few 
hundred samples available, and (3) the expression of genes in 
cancerous and non-cancer tissues needs to be distinguished, 
resulting in numerous genes irrelevant to cancer classification 
and analysis [37]. To leverage such types of data and develop 
an accurate classifier based on them, researchers proposed FS 
and/or dimensionality reduction. Various methods have been 
used for classification, but recently, DL has been explored 
because it can handle raw and high-dimensional data [37].
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3.4.2. High dimensionality

Pirooznia et al. have adapted and tested many classical 
machine learning methods for transcriptomic applications, 
including linear models, quadratic models, support vector 
machines, RFs, and boosting [38]. The accuracy and 
robustness of medical models can still be a problem [39], 
even though these methods produce promising results. It is 
challenging to model gene expression data due to its high 
dimensionality, the lack of examples for training, overfitting 
during training, and the lack of robustness [14]. With the help 
of a stacked sparse autoencoder (AE), meaningful features 
can be extracted efficiently from high-dimensional data using 
machine learning approaches like AE [40].

The 11-tumor database is a widely used collection of 
gene microarrays for studying cancer [41]. The destiny of 
high-dimensionality is evident in this dataset due to the high 
number of features and the low capacity of the registers. It 
suggests that many strategies may be used in the majority 
of investigations, such as FS algorithms [42-45], dimension 
reduction [46], clustering methods [47-49], and pre-processing 
techniques [50], among others.

With most classifiers, gene selection is a preliminary 
step since gene expression data have a high dimensionality, 
making classification difficult. By filtering irrelevant features, 
it improves time complexity and classification accuracy. 
Although existing “feature selection algorithms” are scalable 
and generalized, they may not be able to perform accurately 
on new datasets because of constraints on scalability and 
generalization. Deep neural networks (DNNs) can help 
automate the extraction of features and construct generalized 
and scalable classifiers in such a scenario. As part of this paper, 
a DL-based genetic algorithm was used with DL to improve 
cancer classification [51].

3.4.3. FS and dimension reduction

Informative FS is essential to the retrieval of biological 
data from gene expression data in higher dimensions. An 
artificial intelligence (AI) model based on DL was developed 
in a recent study to detect prostate cancer using gene 
expression data from Microarrays. This technique selected 
the optimal set of features using an FS technique based 
on chaotic invasive weed optimization. Our next research 
article identified causal genes of ovarian cancer using gene 
features from genomics and pathway annotations. A graph 
convolutional network was used to construct the gene feature 
based on gene features and network topology [52]. Graph 
neural networks (GNNs) also eliminated sparse features from 
binary fingerprints by extracting graph-level representations 
containing 2D structures and saving them into feature vectors. 
A study analyzing lung cancer gene expression profiles in 
whole blood noted that the dataset were highly imbalanced. 

AAM and European males had disparities in lung cancer 
development, which has been addressed using (a) LIMMA, 
which employs statistical methods, and (b) concrete AE, 
which utilizes unsupervised algorithms and DL. Several 
authors have developed an architecture that analyzed whole-
transcriptome gene expressions to identify complex genetic 
alterations that drive cancer progression and complex gene 
expressions. The architecture is called “Gene Expression 
Network” (GeneXNet). They used the design of our network 
to show how it is possible to create an overall end-to-end 
learning technique for detecting different cancers without 
selecting genome-wide features [2,9]. A non-linear model may 
be fitted to choose features. In the case of 50 genes (PAM50), 
domain experts developed a more autonomous alternative. 
A computation statistical analysis of the gene set showed that 
the first 50 features of the PAM50 genes, represented about 
1 – 2% of all data. It indicated the importance of the PAM50 
genes for fitting the model.

3.5. DL methodologies

Since DL models are better at capturing complicated 
patterns and correlations within highly-dimensional data, 
they should be used instead of fundamental models of gene 
expression analysis for cancer diagnosis, prognosis, and 
classification. DL models, such as deep convolutional neural 
networks (CNNs), deep long-short-term memory (LSTM) 
models, and artificial neural networks with multiple layers, 
have shown superior performance in handling intricate 
biological data and extracting meaningful features for 
accurate predictions [53-55]. This ability to automatically 
build hierarchical data representations is a significant strength 
of DL models. It allows them to find hidden relationships 
and patterns that would have not been obvious using more 
conventional machine learning techniques. By leveraging 
multiple layers of hidden units, DL models can effectively 
capture intricate relationships within gene expression data, 
enhancing predictive accuracy and robustness in cancer 
diagnosis and prognosis [55].

Moreover, DL models excel in handling large-scale and 
highly dimensional datasets, such as gene expression profiles, 
by automatically extracting relevant features and patterns 
without requiring manual feature engineering. This capability 
is conducive to cancer research, where the complexity and 
heterogeneity of biological data necessitate sophisticated 
modeling techniques to uncover subtle molecular signatures 
associated with different cancer types and subtypes [56,57]. 
DL models offer flexibility and scalability in accommodating 
diverse data types and modalities, including gene expression 
data, imaging data, and clinical parameters. By leveraging 
DL algorithms, researchers can integrate multi-omics data 
sources and develop comprehensive models that capture the 
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multidimensional nature of cancer biology, leading to the 
development of more accurate and personalized diagnostic 
and prognostic tools [58]. In summary, the rationale for 
utilizing DL algorithms in gene expression analysis for 
cancer diagnosis and prognosis stems from their ability to 
handle complex, high-dimension data, automatically learn 
hierarchical representations, and extract meaningful features 
without manual intervention. By harnessing the power of DL 
models, researchers can gain valuable insights from biological 
data, improve predictive accuracy, and advance precision 
medicine in oncology.

3.5.1. LSTM

LSTM uses a much larger memory structure to approximate 
a non-linear function for prediction. As the prior function for 
features is represented by this prediction model, it plays a 
crucial role in learning how the data are distributed. A very 
complex classification task can be learned using LSTM, 
which has also helped predict breast cancer subcategories. 
Nevertheless, the generalization of the learning is much more 
complicated than the usual machine learning techniques since 
more data and regularization are required. The initialization 
condition problem can be solved by extracting practical 
components from the feature space [59]. LSTMs were also 
developed by Hochreiter and Schimdhuber [60], and are used 
primarily for voice recognition. Because of using a cell as a 
memory unit, LSTMs could keep their value for an extended 
period and thus remember the value they computed recently. 
Cells, also known as memory units, contain three gates that 
control data movement within [6].

3.5.2. Deep recurrent neural networks (DRNN)

With the DRNN classifier, survival can be predicted 
in a shorter period, so it is an effective tool for survival 
prediction [61]. The DRNN classifier records its dynamic 
time series and hidden layer through the nodes’ directional 
connections within the hidden layer. The configuration of 
DRNN differs from that of a feed-forward network using 
feed-forward and feedback associations between the internal 
processing elements, which record input sequences at different 
times. DRNN achieves a more robust transformation with 
technical indicators by combining various non-linear layers 
associated with time, allowing it to improve prediction 
capacity. This method predicts outputs based on information 
from random sequences and historical data at lower phases. In 
addition, the data sequence is efficiently processed, followed 
by applying the output. Using feature learning, inputs are 
mapped to hidden states, and then hidden states are mapped 
to output series [7].

An approach using CNNs and bidirectional gated recurrent 
units (BiGRUs) was proposed to reduce the dimensionality 

of gene expression data and remove irrelevant components. 
DCGN initially used synthetic minority over-sampling to 
ensure data parity. In contrast to CNNs, which struggle with 
high-dimension data and extract critical local properties, 
BiGRUs could examine deep features while preserving 
their information. The DCGN has small sample sizes and 
sparse features. Hence, a combination of neural networks 
is needed to capture them [1]. A quantum-inspired immune 
clone optimization algorithm (QICO) was used to optimize 
the hidden neurons of the optimized RNN using a FS and 
classification algorithm (QICO). Using the constraints of 5 and 
25 hidden neurons, QICO schemes tune the hidden neurons 
to boost performance [62].

3.5.3. Transfer learning

Transfer learning is often recommended for dealing 
with gene expression data with small training sets and high 
dimensions [63]. Transfer takes information from one model 
(source) and transfers it to another. Any classification task 
involving common visual or textual patterns is commonly 
solved using transfer learning [63] in image analysis and 
natural language processing. It is possible to use a large 
source dataset and a target dataset to develop these classes. 
Researchers evaluated the performance of a DL approach 
based on an exhaustive set of experiments for predicting 
cancer [14]. It has been shown that gene expression data 
could be transferred between cell lines and patient data, as 
well as pan-cancer and specific cancers. This approach may 
help develop accurate models in rare cancer cases where large 
datasets are unavailable.

In another study, a system of end-to-end learning was 
developed using multiple tissue samples representing a variety 
of cancerous tumors spreading across various organs. Total 
RNA sequencing was used in the deep CNN learning model 
to quantify gene expression across the whole transcriptome 
[2,10].

3.5.4. DNN

By utilizing the multi-layer feature of DL [64], multi-
layer DNN can effectively explore hierarchical data 
representation [37]. Due to these properties, DNNs showed 
outstanding performance in cancer classification. As one of 
the simplest types of multi-layer neural networks, DNNs can 
handle AE, stacked AE, deep belief network, and Boltzmann 
machines with many advantages, such as utilizing perceptrons.

3.5.5. Adversarial networks

The researchers provided a DL model for cancer 
detection by employing gene expression patterns from the 
whole transcriptome [2,9,10]. They designed a novel CNN 
topology to identify cancer-causing genetic mutations in 
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whole transcriptomes. To this end, genomic signatures were 
learned across many tissue types without first having to choose 
gene characteristics. To cope with complex gene expression 
and limited training samples, a new CNN architecture called 
GeneXNet uses multi-layer blocks called GeneXNet blocks. 
This network uses fewer input samples and is highly accurate. 
Two residual learning networks are developed by combining 
deep CNNs and densely connected convolutional networks. 
On the test dataset, the SROC accuracy was 98.93%, and 
the area under the curve (AUC) was 0.99 based on the block 
architecture combined with two different learning sub-blocks.

A deep generative machine learning algorithm, 
DeepCancer, identifies non-labeled features in microarray 
data [65]. DeepCancer has a DL component since it uses 
Generative Adversarial Networks to classify tissue samples. 
The model merges traditional classifiers with a new model 
to identify cancerous and non-cancerous tissues. A standard 
uniform distribution is used to collect an example of a noise 
mini-batch, and a standard distribution is used to collect an 
example of a data mini-batch. The gradients can be calculated 
using an optimization function. The training of discriminators 
should be frozen. They applied a mini-batch of noise samples 
from the standard uniform distribution and then performed 
stochastic gradient descent on G. Using two clinical datasets, 
they tested the model. The F-score was 70%, the precision 
was 55%, and the recall was 100%.

Five models were tested on five sets of data from the 
Omnibus library [37]. The purpose of this study was to define 
deep feed-forward neural networks. They used a multilayer 
perceptron (MLP) feed-forward neural network to receive 
the gene expression values of each sample. They also applied 
a dropout penalty to three dropout layers and four fully-
connected layers to prevent over-fitting. The network also had 
seven hidden layers. A Softmax classifier also assigned the 
output features of the seventh hidden layer, and the input layer 
then applied a regularization parameter to the data. Finally, 
layers were used for non-linear relative and tangent hyperbolic 
(tanh) functions. About 100%, 85%, 100%, 96%, and 100% 
accuracy were achieved in five datasets, respectively [37].

3.5.6. AE

Tapak et al. used a hierarchical clustering technique to 
identify high-risk and low-risk groups that relied on just 
100 AE features retrieved using a deep-learning neural 
network [66]. Gene profiles linked to different forms of oral 
cancer were found using the Cox regression model and the 
supervised RF technique. Statistical evaluations of the GEO 
dataset yielded positive results.

A study [59] used gene-subcategory interactions (GSIAR) 
to regularize breast cancer data. To reach the best balance 
in representation, GSIAR combined regeneration and sub-

categorical capabilities. Using GSIAR, genes associated with 
human disorders were heuristically selected according to their 
association with them. A  deep computational architecture 
was used to construct prediction models based on cleansing, 
modeling, and analysis of statistical data. As a result, they 
developed a concept of selection and analysis and a prediction 
model, resulting in an F Score of 83.3% at the American Joint 
Committee on Cancer.

3.5.7. CNN

DL is achieved using CNNs with BiGRUs [1]. By 
learning features from gene expression data, DCGN reduces 
non-linear dimensionality and removes irrelevant factors. It 
uses gene expression data to identify cancer subtypes. Using 
the Synthetic Minority Oversampling Technique algorithm, 
samples are balanced, and enhanced data are obtained 
using the first DCGN module. Three modules make up the 
program. A second part of the process involves normalizing 
the features. The third part of the process comprises capturing 
critical gene expression data features during training. This 
research used breast cancer gene expression datasets to predict 
multi-classifications using the outputs of the feature learning 
module. Classification losses were calculated by comparing 
false labels with actual labels. The BLCA-CIT-Curie database 
was used to analyze these results, and they showed accuracy, 
precision, recall, and specificity values of 98.5%, 98.7%, 
98.5%, and 98.5%, respectively [1].

The DL techniques of MLP, two-dimensional, and one-
dimensional CNNs were compared by Majumder et al. 
Features for colon, pancreatic, breast, and lung malignancies 
were selected using Analysis of variance (ANOVA) and 
information gain. ANOVA and 1DCNN were used to select 
features. 1DCNN and IG FS yielded 100% sensitivity, 100% 
precision, and 100% accuracy for the classification of lung 
cancer [67].

Almarzouki used bone marrow PC gene expression 
data [8] to present the artificial Bee Colony features selection 
method. Tumors were unlabeled and then classified using 
CNNs. Cross-validation of k-folds was also deployed for 
CNNs using the Kaggle genomic dataset, including lung, 
kidney, and brain cancer datasets. The precision, sensitivity, 
accuracy, and F-score rates were determined as 86%, 86%, 
98.97%, and 86%, respectively [8].

Using a dual convergence architecture, [3] information 
about mutations, gene expression, and drug structures was 
separated. An algorithm was created by combining the data 
from both models to build a single prediction model. GNNs 
and CNNs were used to extract independent features from 
genomic signatures and molecular graphs, which were then 
merged. The genomics of cancer drug sensitivity (GDSC) and 
cancer cell lines encyclopedia datasets were used to study the 
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GDSC. Neither F-score nor sensitivity, specificity, or accuracy 
were provided.

Zhao et al. used a method to predict clinical outcomes 
based on tumor genomic profiles without gene filtering, 
according to [16]. This method used CNNs with stationary 
wavelet transforms (SWTs). SVM, logistic regression, and 
RF were all included in the proposed SWT-CNN to increase 
prediction accuracy. Before training the CNN, they used Cox 
proportional-hazards regression to choose predictive markers 
by ranking the genes with the ranking values. Databases, such 
as TCGA, were utilized for the research. Three-year survival 
was predicted with an AUC of 0.664, whereas the tumor stage 
was predicted, with an AUC being 0.661 on average.

Shah et al. [70] proposed a hybrid LS-CNN DL model for 
classifying cancer data. The data were cleaned of categorical 
row and column values, missing values, and numeric features. 
LS then assigned a Laplacian score to each feature. LS used 
nearest-neighbor graphs to model local geometric structures. 
LS then selected features related to this graph structure. 
A  CNN was then applied to classify the data. Datasets 
indicated an average accuracy of 97.93%.

According to Tabares-Soto et al. [68], the accessible 
“Tumors database” (https://github.com/simonorozcoarias/
ML_DL_microArrays/blob/master/data11tumors2.csv) was 
used. The best accuracy was 94.43% using k-fold cross-
validation. A CNN tuning did not significantly improve the 
accuracy.

Table 1 summarizes the literature about the performance 
of DL approaches used in different cancer types, along with 
their corresponding gene expression database.

3.6. Ethical concerns and regulations regarding AI 
applications in oncology

Implementing AI in health-care settings, particularly 
oncology offers a transformative pathway to enhancing 
patient care and outcomes. However, this integration 
raises significant ethical implications and necessitates 
regulatory considerations to ensure responsible and 
effective deployment [73]. The following are critical ethical 
considerations: transparency, informed consent, impartiality, 
and compliance with regulations such as the European 
Union’s AI Act and HIPAA [74]. For AI to reach its full 
potential in cancer management and healthcare in general, it 
is essential to address the ethic, technological, and regulatory 
issues [73]. The ethical considerations in implementing AI 
in health-care extend to data privacy concerns, regulatory 
hurdles, and ensuring fairness and equity in deploying AI and 
robotics [75]. When incorporating AI and machine learning 
into clinical practice, stakeholders must navigate ethical 
dilemmas, data privacy, and regulatory landscapes [76]. 

Together, stakeholders can raise awareness about potential 
ethical problems and emphasize responsible AI development 
to create a future in which AI enhances health-care delivery 
in a way that is both ethical and beneficial to patients [77]. 
Regulatory frameworks are crucial to safeguarding patient 
rights and promoting the ethical use of AI in healthcare [78]. 
Establishing normative standards and evaluation guidelines 
for AI implementation in health-care requires collaboration 
among regulatory agencies and health-care institutions [79].

Furthermore, interdisciplinary collaborations are 
advocated for establishing ethical guidelines and ensuring 
responsible AI use in healthcare [80]. The successful 
integration of AI in healthcare, especially in oncology, 
depends on thoroughly considering ethical implications and 
regulatory frameworks. Transparency, fairness, data privacy, 
and adherence to regulations are paramount to exploiting the 
full potential of AI while safeguarding patients’ well-being 
and trust in the health-care system.

3.7. Scalability of the DL approaches

Scalability is a crucial aspect when considering the 
implementation of DL approaches in clinical settings, 
particularly in terms of computational costs and real-time 
applicability. DL models, such as CNN, AEs, Adversarial 
Networks, DNN, Transfer Learning, DRNN, and LSTM 
networks, have shown promise in revolutionizing health-care 
applications [56,81,82]. These models offer a scalable and 
data-driven approach to understanding complex systems and 
extracting valuable insights from large datasets [56,81,82]. In 
clinical settings, the scalability of DL approaches is essential 
to efficiently handling vast amounts of health-care data. 
DL models have demonstrated the ability to learn patterns 
within data and make accurate predictions, such as in disease 
diagnosis and image processing tasks [83-85]. However, the 
scalability of these models comes at computational costs that 
must be carefully ensured for real-time applicability [86,87]. 
Scientists have suggested new ideas to tackle the computational 
difficulties linked to DL in the health-care field. One 
suggestion is to create scalable deep-learning systems that 
can learn important clinical traits by utilizing historical data 
from medical ontologies [88,89].

Advancements in DL accelerators and edge computing have 
aimed to improve the efficiency and real-time applicability 
of DL models in health-care applications. Furthermore, to 
make health-care data management more secure and scalable, 
people have looked at ways to combine DL with other 
technologies, such as blockchain. These hybrid approaches 
offer promising solutions to address scalability issues while 
ensuring data security and integrity in clinical settings. 
While DL approaches hold great potential for transforming 
healthcare, including oncology, their scalability in terms of 
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Table 1. A list of deep learning approaches used for predicting cancer and its subtypes using the gene datasets
Study Method Dataset Accuracy Area 

under the 
curve

F‑score Precision Recall Specificity

[9] Two residual learning networks, 
i.e., deep and complex CNNs 
and densely connected 
convolutional networks

11,093 human samples for mRNA 
gene expression, 60,483 genes

98.93 0.99 ‑ ‑ ‑ ‑

[65] DeepCancer GSE45584 breast cancer dataset 
and prostate cancer dataset [69]

‑ ‑ 70 55 100 ‑

[37] Deep learning recursive 
feature elimination

Leukemia cancer, GSE15061, 
54613 genes

90 ‑ ‑ ‑ ‑ ‑

Deep learning univariate 
feature selection

Inflammatory breast cancer, 
GSE45581, 40991 genes

85 ‑ ‑ ‑ ‑ ‑

Deep learning recursive 
feature elimination

Lung cancer, GSE2088, 40368 
genes

100 ‑ ‑ ‑ ‑ ‑

Deep learning univariate 
feature selection

Lung cancer, GSE2088, 40368 
genes

100 ‑ ‑ ‑ ‑ ‑

Deep learning univariate 
feature selection

Bladder cancer, GSE31189, 54675 
genes

96 ‑ ‑ ‑ ‑ ‑

Deep learning recursive 
feature elimination

Thyroid cancer, GSE82208, 54671 
genes

100 ‑ ‑ ‑ ‑ ‑

[66] AutoEncoder, Cox 
proportional hazards model, 
and a supervised random forest

GSE26549 91.6 ‑ ‑ ‑ 81.4 96.6

[59] Dual‑phase deep learning 
(deep representation learning)

American joint committee on 
cancer stage

‑ ‑ 83.3 ‑ ‑ ‑

[67] Multilayer perceptron IG 
(information gain)

Colon 84 ‑ 87 87 87 ‑

1DCNN IG Pancreas 91 ‑ 93 87 100 ‑
1DCNN IG Breast 94 ‑ 92 86 100 ‑
1DCNN IG Lung 100 ‑ 100 100 100 ‑

[8] Artificial bee colony, CNNs Kaggle gene expression dataset 98.97 86 86 86 ‑
[3] Graph Neural Networks and 

CNN
SWnet to genomics of cancer drug 
sensitivity and cancer cell lines 
encyclopedia

‑ ‑ ‑ ‑ ‑ ‑

[16] SWT‑CNN TCGA tumor stage prediction ‑ 0.661 ‑ ‑ ‑ ‑
SWT‑CNN TCGA 3‑year overall survival 

prediction
‑ 0.664 ‑ ‑ ‑ ‑

[70] CNN based on Laplacian score AML, CNS, MLL, SRBCT, Colon, 
Arcene, DLBCL, Leukemia, 
Prostate, Brain 

97.93 ‑ ‑ ‑ ‑ ‑

[68] Using k‑fold cross‑validation, 
a CNN is applied 

11 Tumors database 94.43 ‑ ‑ ‑ ‑ ‑

[71] PathDeep Gene expression omnibus 
microarray

99.1 ‑ ‑ ‑ ‑ ‑

[4] Wasserstein generative 
adversarial network

TCGA ‑ 0.98 ‑ ‑ ‑ ‑

[6] Stacked ensemble model Five benchmark datasets 98 ‑ ‑ ‑ ‑ ‑
[14] NN TCGA 98.05 ‑ ‑ ‑ ‑ ‑
[52] XGPG GWAS and eQTL ‑ 0.7541 ‑ ‑ ‑ ‑
[39] AIFSDL‑PCD, chaotic 

invasive weed optimization, 
deep neural network

Open access dataset, including 
52 prostate tumors and 50 normal 
tissues with 2135 genes.

97.47 ‑ 97.58 96.87 97.75 97.26

[72] proposed CNN DeepGX TCGA 95.65 ‑ 94.45 95.55 95.69 ‑
[51] DLFCC Leukemia, Lung, Prostate, 

Colorectal
86.25 ‑ ‑ ‑ 87.75 67.5

[7] Deep recurrent neural 
networks ‑based CHHPO

PANcancer 52.5 ‑ ‑ ‑ ‑ ‑

(Cont’d...)
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computational costs and real-time applicability is a critical 
consideration. By developing scalable frameworks, leveraging 
innovative technologies, and optimizing computational 
resources, DL can be effectively implemented in clinical 
settings to improve patient care and outcomes.

DL approaches, such as those mentioned above, provide 
powerful tools for analyzing complex health-care data in 
clinical settings. However, the computational costs and real-
time applicability of these models are critical considerations for 
their successful implementation [90,91]. The computational 
costs associated with DL models can be significant due to 
the complexity of the algorithms and the large amounts of 
data involved. While DL models excel at learning intricate 
patterns within data, this efficacy often comes at the expense 
of increased computational complexity [91]. Managing these 
computational costs is essential to ensuring the practicality 
and efficiency of deploying DL approaches in real-time 
clinical settings [90]. To address the computational challenges, 
researchers have explored innovative solutions to enhance 
the scalability and real-time applicability of DL models in 
healthcare. For instance, integrating DL with edge computing 
technologies has shown promise in improving the efficiency 
and speed of data processing, enabling real-time analysis and 
decision-making [90].

In addition, advancements in DL accelerators and 
hardware have aimed to optimize computational resources and 
enhance the real-time performance of DL models in clinical 
applications [90]. Moreover, the development of hybrid 
DL models that leverage blockchain technology has been 
proposed to enhance the scalability, security, and real-time 
processing of health-care data [88]. By combining DL with 
blockchain, researchers aim to address computational costs 
while ensuring data integrity and security in real-time health-
care applications. So, while DL approaches offer immense 
potential for revolutionizing healthcare, including oncology, 
addressing these models’ computational costs and real-time 
applicability is crucial to their successful integration into 
clinical settings. DL can improve patient-care outcomes in 

real-time clinical decision-making by leveraging innovative 
technologies, optimizing computational resources, and 
developing scalable frameworks.

3.8. Case studies

In oncological practice, DL models have shown significant 
effectiveness in assisting with cancer diagnosis and prognosis, 
leading to notable advancements in patient care. Various 
studies have highlighted the transformative impact of these 
models on improving outcomes for cancer patients. One 
example was a study focusing on DL -based cancer survival 
prognosis using RNA-seq data. The researchers developed 
and assessed three distinct deep-learning models for cancer 
prognosis, demonstrating that these models had the potential 
to offer precise and personalized survival predictions based 
on genomic data [92]. This study illustrated how DL methods 
could use molecular data to enhance the accuracy of cancer 
prognosis. In another study, Lai et al. used DL to predict 
the OS of non-small cell lung cancer (NSCLC) patients by 
integrating microarray and clinical data. The researchers 
illustrated the effectiveness of DL by combining diverse 
data sources to enhance prognostic predictions for different 
NSCLC subtypes, such as adenocarcinoma and squamous cell 
carcinoma [93]. This research underscores the value of DL 
in integrating multi-omics data to improve cancer prognosis.

The research on the use of AI methods for breast cancer 
diagnosis and prognosis emphasized that improved accuracy, 
efficiency, and reliability could be achieved through DL 
models. By employing CNN, a study highlighted the potential 
for DL in improving breast cancer diagnosis and prognosis, 
underscoring the significance of these models in clinical 
decision-making [94]. The study additionally explored the 
application of DL in cancer prognosis prediction, highlighting 
the potential of DL models in utilizing multi-omics data for 
enhanced prognostic accuracy. By incorporating genomics, 
transcriptomics, and clinical information, DL models offer 
a promising approach to improving cancer prognosis and 

Table 1. (Continued)
Study Method Dataset Accuracy Area 

under the 
curve

F‑score Precision Recall Specificity

[1] DCGN BRCA 94.8 ‑ ‑ 96.8 96.7 97
DCGN BLCA 94.2 ‑ ‑ 94.5 94.2 94.2
DCGN BLCA, Lund 93 ‑ ‑ 93.7 93.4 93.4
DCGN BLCA TCGA 98.2 ‑ ‑ 98.4 98.2 98.2
DCGN BLCA‑CIT‑Curie 98.5 ‑ ‑ 98.7 98.5 98.5

[62] QICO‑RNN Colon cancer, defused B‑cell 
Lymphoma, Leukemia, Wisconsin 
Diagnostic Breast Cancer and 
Wisconsin Breast Cancer Data"

Not available 
numerically 

(over 95)

‑ Not available 
numerically 

(over 80)

Not available 
numerically 

(over 80)

Not 
available 

numerically 
(over 80)

Not 
available 

numerically 
(over 80)

CNN: Convolutional neural network, SWT: Stationary wavelet transforms, ‑: No values for the corresponding metrics, TCGA: The cancer genome atlas
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survival prediction (Zhu et al., 2020). These case studies 
showed the substantial impact of DL models in oncology, 
showcasing their ability to revolutionize cancer diagnosis and 
prognosis by leveraging diverse data sources and enhancing 
predictive accuracy. Integrating DL approaches into clinical 
practice allows health-care professionals to make more 
informed decisions, ultimately improving patient outcomes 
and personalized treatment strategies.

3.9. Potent interpretability of the DL models in cancer 
diagnosis

It is essential to explore techniques that improve 
model transparency and trustworthiness to enhance the 
interpretability of DL models in critical fields like cancer 
diagnosis. Several studies have delved into this area, 
addressing challenges and looking for opportunities to make 
DL models more interpretable.

Meng et al. studied the interpretability and fairness 
evaluation of DL models for mortality prediction using the 
Medical Information Mart for Intensive Care-IV dataset. 
They highlighted the importance of interpretability methods 
in identifying critical features for mortality prediction and 
addressing fairness concerns in model prediction [95]. This 
study underscored the significance of transparent and fair 
DL models in health-care applications. In another study, 
Miotto et al. discussed the challenges in DL applications 
in healthcare. They emphasized the need to develop 
interpretable architectures to enhance the understanding of 
DL models. By bridging the gap between complex DL models 
and human interpretability, researchers could improve the 
trustworthiness of these models in critical applications like 
cancer diagnosis [96].

Furthermore, classification of lung and colon cancer has 
also been explored by using medical imaging and the study 
demonstrated the advantage of machine learning models in 
providing better interpretability through feature engineering. 
The study compared the interpretability of machine learning 
models with the black-box nature of DL models, emphasizing 
the importance of improving the transparency of DL 
approaches [97].

Researchers have proposed innovative solutions to 
address the lack of interpretability in DL models. For 
example, attention mechanisms were investigated to enhance 
the interpretability in DL models, providing insights into 
the features influencing predictions [98]. The challenges 
posed by the poor interpretability of conventional CNN 
models in cancer prognosis prediction were also addressed, 
emphasizing the need for more transparent and interpretable 
models [99]. In conclusion, improving the interpretability of 
DL models for cancer diagnosis is crucial for fostering trust 

and understanding in clinical decision-making. By developing 
transparent and interpretable DL architectures, researchers 
can enhance the reliability and acceptance of these models 
in critical health-care applications.

4. SEMINAL WORKS

To ensure a comprehensive discussion of DL methods 
for cancer diagnosis, it is crucial to integrate foundational 
theories with innovative research. By including seminal 
works alongside recent studies, the manuscript offers a 
thorough overview of the evolution and current status of 
DL applications in cancer diagnosis. One seminal work is 
the study conducted by Wang et al. [100], who used DL to 
analyze images from lung cancer pathologies and showed that 
the future of DL in cancer diagnosis presents both obstacles 
and opportunities. This work added to our fundamental 
knowledge by shedding light on how DL algorithms were 
used for lung cancer detection and prognosis. Another 
essential study to consider is the work by Verma [101], which 
examined the application of interpretable DL models in health-
care for disease diagnosis. This research emphasized the 
significance of model interpretability in developing reliable 
and trustworthy DL systems for medical applications.

Furthermore, the study by Wei [102] on radiomics, DL, 
and early diagnosis in oncology can serve as a foundational 
reference. This work discussed the role of medical imaging 
in cancer detection and highlighted the importance of DL 
approaches in early diagnosis and prediction of treatment 
response. By incorporating seminal works alongside recent 
studies, this review presents a well-rounded discussion on the 
evolution, challenges, and advancements in DL methods for 
cancer diagnosis. This approach helps readers understand the 
field comprehensively, ranging from foundational principles 
to cutting-edge applications.

5. LIMITATIONS AND FUTURE DIRECTIONS

In the realm of DL approaches for gene expression analysis 
for cancer diagnosis, prognosis, and classification, it is crucial 
to assess the limitations of current studies. By scrutinizing the 
strengths and weaknesses of existing studies, we can pinpoint 
areas for improvement and innovation in utilizing DL models 
in oncology.

A significant limitation of current studies is the lack of 
interpretability and transparency in DL models, particularly 
in gene expression analysis for cancer diagnosis. The 
fundamental processes underlying the predictions of many 
DL models are sometimes seen as “black boxes” because of 
this limitation. As a result, DL methods may not be suitable 
for therapeutic settings where trustworthiness and openness 
are more important [101]. Although DL models have 
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demonstrated potential in survival prediction and analysis of 
histopathological images of various cancer types, challenges 
may arise concerning model generalizability and robustness 
across diverse patient populations and datasets. Variations 
in data quality, sample sizes, and feature representation can 
influence the performance and dependability of DL models 
in real-world clinical settings [103]. The scalability and 
computational expenses associated with DL models for gene 
expression analysis for cancer diagnosis can present obstacles, 
particularly when applying these models in resource-limited 
health-care environments. Enhancing model efficiency, 
reducing computational burdens, and ensuring real-time 
applicability are critical for putting DL approaches into 
oncological applications [102].

This review endeavored to tackle these limitations by 
offering a comprehensive analysis of the current landscape 
of DL applications in gene expression analysis for cancer 
diagnosis. By integrating seminal works with recent 
studies, the review provided a well-rounded perspective on 
the progression of DL methods in oncology. By critically 
assessing the gaps and challenges to existing studies, this 
review laid the groundwork for future advancements in 
creating interpretable, robust, and scalable deep-learning 
models for cancer diagnosis and prognostic evaluation 
of cancer. Future directions in applying DL for gene 
expression analysis for cancer diagnosis, prognostication, and 
classification are crucial for advancing precision medicine 
and improving patient outcomes. By synthesizing insights 
from current research and identifying emerging trends, 
researchers can shape the trajectory of DL applications in 
oncology. One potential future direction is integrating multi-
omics data to enhance the predictive power of DL models for 
cancer diagnosis and prognostic prediction. By combining 
genomics, transcriptomics, proteomics, and other molecular 
data types, researchers can develop comprehensive models 
that capture the complexity of cancer biology and improve 
patient stratification and treatment selection [104].

Exploring explainable AI techniques in DL models for 
cancer diagnosis and prognostication is a promising avenue 
for future research. Enhancing the interpretability and 
transparency of DL models can foster trust among clinicians 
and patients, facilitating the adoption of AI-driven decision 
support systems in clinical practice [105]. Another future 
direction involves the development of personalized deep-
learning models for cancer treatment selection. By leveraging 
patient-specific data, such as genetic profiles, imaging data, 
and clinical parameters, researchers can tailor treatment 
recommendations using machine learning algorithms, leading 
to more effective and individualized cancer therapies [106].

The advancement of DL models for early cancer detection 
and monitoring holds significant promise. DL algorithms 

may be trained to identify cancer earlier with more precision 
and sensitivity using new imaging modalities, such as digital 
pathology and radiomics. Early detection and timely treatment 
will help attain better patient outcomes.

By investigating federated learning methodologies, we can 
ensure the privacy and security of patient data while facilitating 
cross-institutional model training. Robust and generalizable DL 
models may be trained using federated learning, aggregating 
information from multiple datasets without centralized data 
sharing. It opens the door to scalable and privacy-preserving 
AI applications in cancer research. In conclusion, future 
research directions in DL for gene expression analysis for 
cancer diagnosis encompass integrating multi-omics data, 
explainable AI techniques, personalized treatment selection, 
early detection strategies, and federated learning approaches. 
By embracing these innovative pathways, researchers can 
take the field of oncology toward more precise, efficient, and 
patient-centered cancer care.

6. CONCLUSIONS

This review explicitly shows that DL approaches have 
immense potential for revolutionizing gene expression analysis 
for cancer diagnosis, prognostication, and classification. The 
various DL methodologies, including LSTM Networks, 
DRNN, CNN, and AEs, have experienced significant 
advancements in handling the complex, high-dimensional 
nature of genomic data.

These approaches have been proven effective in extracting 
meaningful features from gene expression profiles, reducing 
dimensionality, and improving the accuracy of cancer 
classification and prognostic assessment. DL models’ ability 
to automatically learn hierarchical representations from 
raw data has enabled researchers to uncover subtle patterns 
and relationships within gene expression datasets that may 
have been subtle using traditional analytical methods. 
However, the review also highlights several challenges and 
limitations faced by current DL applications in oncology. 
These include interpretability, scalability, and the need for 
large datasets to train robust models. The ethical concerns 
and regulatory considerations surrounding the use of AI in 
health-care settings, particularly in sensitive areas, such as 
cancer diagnosis, underscore the importance of responsible 
development and implementation of these technologies. 
This review also points to the directions for future research 
and development. Integrating multi-omics data, exploring 
explainable AI techniques, and developing personalized 
deep-learning models for treatment selection can significantly 
enhance these approaches’ clinical utility. The potential 
for early cancer detection and monitoring using advanced 
imaging modalities and DL algorithms also presents exciting 
possibilities for improving patient outcomes.
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In conclusion, while DL approaches have made significant 
strides in enhancing our understanding and analysis of gene 
expression in cancer, substantial room remains for growth 
and refinement. As researchers continue to address current 
limitations and explore new frontiers, integrating DL into 
oncology can dramatically improve cancer diagnosis, 
prognostication, and treatment efficacy, ultimately leading to 
better patient care and outcomes. The ongoing collaboration 
between computational scientists, biologists, and clinicians 
will be crucial in realizing the full potential of these powerful 
analytical tools in the fight against cancer.
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