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1. INTRODUCTION

Alzheimer’s disease (AD) is the most common form of 
dementia. Individuals over the age of 65 are at an increased 
risk of developing AD, as aging is the most significant 
risk factor for the disease [1]. Western countries, where a 
considerable increase in average life expectancy is expected, 
are projected to experience a high prevalence of AD [2]. There 
is currently no cure for this disease, and early diagnosis is 
crucial, as AD is a progressive condition with symptoms that 
worsen over time. Diagnosing AD in its early stages can be 
challenging because its symptoms are often similar to those 
of other conditions, such as normal aging [3]. AD progresses 
slowly and affects most areas of the brain, impairing memory, 
thinking, judgment, language and problem-solving abilities, 
personality, and movement [4].

AD progresses through four main stages, beginning with 
mild cognitive impairment (MCI), a pre-dementia phase in 
which cognitive deficits, particularly in memory, are subtle, 
and daily life remains largely unaffected. First defined in 1988 
[5,6], MCI is considered a transitional stage between normal 
aging and AD. Although MCI increases the risk of developing 

AD, only 10%–15% of individuals with MCI progress to 
AD each year [7], with the cognition in some individuals 
either returning to normal or remaining stable [4]. As AD 
progresses, it advances into the mild stage, where memory 
lapses and difficulties with complex tasks become more 
noticeable, although individuals can still function with some 
independence. The moderate stage follows, characterized by 

Background: Alzheimer’s disease (AD) is the most common form of dementia. The lack of effective prevention or cure makes 
AD a significant concern, as it is a progressive disease with symptoms that worsen over time. Objective: The aim of this 
study is to develop an algorithm capable of differentiating between patients with early-stage AD (mild cognitive impairment 
[MCI]), moderate AD, and healthy controls (C) using electroencephalogram (EEG) signals. Methods: A publicly available 
EEG database was utilized, with seven EEG recordings selected from each study group (MCI, AD, and C) to ensure a balanced 
dataset. For each 1-s segment of EEG data, 43 time-frequency features were computed. These features were then compressed 
over time using 10 statistical measures. Subsequently, 15 classifiers were employed to distinguish between paired groups 
using a 7-fold cross-validation. Results: The strategy yielded better results than state-of-the-art methods, achieving a 100% 
accuracy in both C versus MCI and C versus AD binary classifications. This improvement translated to a 2% increase in 
accuracy for C versus MCI and a 4% increase for C versus AD, despite a 1.2% decrease in performance for AD versus MCI. 
In addition, the proposed method outperformed prior work on the same database by 4.8% for the AD versus MCI comparison. 
Conclusion: The present study highlights the potential of EEG as a promising tool for early AD diagnosis. Nevertheless, a 
more extensive database should be used to enhance the generalizability of the results in future work.

Keywords: Discrimination, Electroencephalogram, Mild cognitive impairment, Alzheimer’s disease

*Corresponding author: 
Pedro Miguel Rodrigues (pmrodrigues@ucp.pt)

This is an open-access article under the terms of the Creative Commons Attribution License, 
which permits use, distribution, and reproduction in any medium, provided the original work 
is properly cited.

© 2025 Journal of Biological Methods published by POL Scientific

How to cite this article: Rodrigues SD, Rodrigues PM. Electroencephalogram-
based time-frequency analysis for Alzheimer’s disease detection using machine 
learning. J Biol Methods. 2025;XX(X):e99010042. DOI: 10.14440/jbm.2025.0069

Electroencephalogram-based time-frequency analysis for Alzheimer’s 
disease detection using machine learning

Sérgio Daniel Rodrigues , Pedro Miguel Rodrigues*

Centre for Biotechnology and Fine Chemistry- Associated Laboratory, Faculty of Biotechnology, Catholic University of Portugal, Rua Diogo 
Botelho 1327, Porto 4169-005, Portugal

(This article belongs to the Special Issue: AI-Driven Empowerment Biosignal’s Applications in Health Systems)

Received: 20 August 2024; Revision received: 10 November 2024; 
Accepted: 13 November 2024; Published: 26 November 2024

Journal of Biological Methods  | Volume XX | Issue X |� 1

https://dx.doi.org/10.14440/jbm.2025.0069
https://orcid.org/0009-0005-4786-7079
https://orcid.org/0000-0002-5381-6615


Rodrigues and Rodrigues� EEG time-frequency analysis for Alzheimer’s detection

more significant cognitive decline, confusion, and increased 
dependence on others for daily activities. Behavioral changes 
may also emerge during this stage [8-10]. In the final, 
advanced stage of AD, patients experience severe cognitive 
and physical impairments, losing the ability to communicate 
effectively or perform basic daily tasks. Full-time care 
and constant monitoring become necessary as the disease 
progresses [8-10].

Early diagnosis of AD significantly impacts a patient’s 
cognitive function and is essential for implementing effective 
treatments to improve quality of life. MCI is particularly 
crucial in this process, as it serves as a key indicator for the 
potential development of AD. However, in clinical practice, 
MCI and AD diagnoses are primarily based on clinical 
assessments that evaluate cognitive function and functional 
status according to criteria established by the National 
Institute of Neurological and Communicative Disorders and 
Stroke and the Alzheimer’s Disease and Related Disorders 
Association (NINCDS-ADRDA) [11-13]. Despite using 
these standardized criteria, the accuracy of MCI diagnosis 
remains suboptimal, with accuracy rates of around 75%. 
This limitation underscores the need for the development of 
new diagnostic methods to improve AD detection accuracy, 
especially during the MCI stage [14].

The brain generates electrical activity that can be 
recorded using electroencephalogram (EEG) signals  [15]. 
As a supplementary diagnostic tool, EEG provides valuable 
insights into the brain’s electrical activity and functional 
patterns [16]. Since AD affects most areas of the brain, 
EEG can reveal both structural and functional deficiencies 
associated with the disease at different stages of its 
progression [17,18]. By capturing neural signals, EEG allows 
for a better understanding of how the brain functions and 
responds in AD.

For decades, EEG has been a valuable diagnostic tool for 
dementia, recording spontaneous electrical brain activity with 
high resolution through scalp electrodes. Since AD affects 
neural activity, EEG can assist in its identification [19]. EEG 
is widely used in clinical settings due to its affordability, 
non-invasiveness, portability, and speed. EEG signals are 
typically divided into frequency bands: delta (1–4 Hz, δ), 
theta (4–8 Hz, θ), alpha (8–13 Hz, α), beta (13–30 Hz, β), 
and gamma (30–40 Hz, γ) [19]. AD notably alters EEG power, 
increasing activity in low frequencies (δ and θ) and decreasing 
activity in high frequencies (α and β) [20,21]. These changes 
are linked to the degeneration of cholinergic synapses in the 
Meynert nucleus, which disrupts acetylcholine synthesis, 
leading to impaired synaptic synchronization and slower 
EEG waves [20,21].

In this study, we leveraged machine-learning (ML)-based 
EEG signal analysis approaches to differentiate between the 

MCI stage, moderate-stage AD, and healthy controls. Our 
primary objectives are as follows:
•	 To introduce the synergistic use of 43 linear and non-

linear time-frequency features to characterize AD 
activity throughout its progression.

•	 To enhance the assessment of distinguishing between 
binary classifications of study groups (MCI, AD, and 
healthy controls) by analyzing the synergistic impact of 
the extracted features with 15 ML classifiers.

2. MATERIALS AND METHODS

The methodology used in this study is illustrated in 
Figure  1 and is divided into three phases: (i) database 
acquisition, (ii) time-series analysis and feature extraction, 
and (iii) ML classification. All stages and analyses were 
developed in a Python (version  3.9.12, Python Software 
Foundation, Wilmington, Delaware, EUA) environment on 
a Mac mini equipped with an M2 chip, featuring an 8-core 
central processing unit, a 10-core graphics processing unit, 8 
GB of random-access memory, and a 256 GB solid-state drive.

2.1. The database

The database was retrieved from a public repository 
(https://doi.org/10.6084/m9.figshare.5450293.v1). Further 
details can be found in the study by Cejnek et al. [22]. The 
database includes data from seven individuals with MCI, 
59 patients with moderate AD, and 102 healthy controls, all 
diagnosed according to the NINCDS-ADRDA Alzheimer’s 
criteria. The selection criteria for AD and MCI patients 
included: (i) cognitive impairment, measured by Mini-Mental 
State Exam scores ranging from 10 to 19; (ii) clinical history 
and examination; (iii) neuroimaging through multi-slice 
computed tomography scans to assess hippocampal atrophy; 
(iv) blood tests; and (v) cerebrospinal fluid biomarkers and 
functional assessments. Given that the database contains only 
seven MCI patients, for a balanced dataset, we randomly 
selected seven healthy controls and seven AD patients. 
EEG signals were recorded from patients with MCI and AD 
while they were resting with their eyes closed and without 
medication, at a sampling rate of 256 Hz. Healthy controls 
were also recorded under the same conditions, but their signals 
were sampled at 200 Hz. To ensure consistency across the 
dataset, EEG data from the control group were resampled 
to 256 Hz. A  spectral analysis was performed to compare 
the frequency content of the original and resampled signals, 
and no distortions related to artifacts or phase shifts were 
detected; the correlation coefficient was near 1, indicating that 
the resampling process was successful. The EEG recordings 
were made using an international 10–20 system with 19 
channels. Each patient’s EEG data underwent channel-wise 
root-mean-square (RMS) normalization, followed by mean 
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value removal. RMS normalization facilitates the comparison 
of EEG signals from different individuals and groups by 
accounting for variations in signal amplitude, independent 
of the recording duration. The mean removal centers the 
signal, which is a particularly important point because the 
time-frequency metrics extracted later assume that the data 
are zero-centered. Subsequently, a 5th-order Butterworth band-
pass filter, with a frequency range of 1–40 Hz, was applied to 
each channel. The demographic characteristics of each group 
are presented in Table 1.

2.2. Time-series analysis and feature extraction

In a sliding window process, lasting one second, 43 
metrics were extracted per channel for each study participant 
(Table 2 for more details). These metrics included entropy 
metrics [23-25], basic statistical measures [26,27], power 
spectral density (PSD) metrics [28-30], frequency domain 
metrics [31], as well as fractal dimension and complexity 
metrics [20,26,32]. After the extraction process, the time-
series data from each channel were compressed using 
10 statistical functions: mean, median, minimum, maximum, 

Figure 1. Electroencephalogram processing workflow diagram.
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standard deviation, variance, and the 25th, 50th, 75th, and 
95th quantiles [33]. This compression reduces dimensionality 
while preserving the most critical information, simplifying 
analysis, and improving interpretability. It also retains 
essential data characteristics, including central tendency, 
dispersion, range, shape, and robustness.

2.3. Extracted EEG time-frequency metrics in the context 
of AD

The following items explain the context of each extracted 
EEG metric within the AD framework:

2.3.1. Entropy metrics

•	 Sample entropy: Measures the complexity and irregularity 
of EEG signals. In AD, lower entropy values often 
indicate reduced complexity and more regular brain 
activity [16,34].

•	 Permutation entropy: Quantifies the complexity of 
EEG signals by analyzing the order of values. In AD 
patients, lower values suggest decreased dynamic 
complexity [16,35].

•	 Spectral entropy: Reflects the distribution of power 
across different frequency components. AD patients 
typically show lower spectral entropy, indicating a more 
predictable and less complex signal [36].

•	 Singular value decomposition entropy: Assesses the 
complexity of EEG signals by analyzing singular values. 
Lower values in AD patients suggest reduced signal 
complexity [37].

•	 Approximate entropy: Measures the regularity and 
predictability of EEG signals. AD patients often exhibit 
lower approximate entropy, indicating more regular brain 
activity [16,34,38].

•	 Sample entropy (ln): Similar to approximate entropy but 
more consistent for shorter data lengths. Lower values in 
AD patients indicate reduced complexity and increased 
regularity [34].

2.3.2. Basic statistical metrics

•	 Minimum/maximum: The lowest and highest values in 
the EEG signal. These metrics help identify the range of 
brain activity in AD patients. Typically, AD patients have 

higher maxima and minima than healthy controls [27].
•	 Mean: The average value of the EEG signal. Changes 

in mean values can indicate alterations in overall brain 
activity in AD patients [39].

•	 RMS: It measures the magnitude of the EEG signal. 
Lower RMS values in AD patients can indicate reduced 
brain activity [39].

•	 Variance/standard deviation: The metric measures the 
spread of EEG signal values around the mean. Lower values 
in AD patients suggest less variability in brain activity [39].

•	 Crest factor: The ratio of the peak value to the RMS 
value, indicating the presence of spikes. Lower crest 
factors in AD patients suggest fewer spikes in brain 
activity [39].

•	 Skewness: It measures the asymmetry of the EEG signal 
distribution. Changes in skewness can indicate alterations 
in brain activity patterns in AD patients [39].

•	 Kurtosis: The metric measures the “tailedness” of the 
EEG signal distribution. Higher kurtosis in AD patients 
can indicate more extreme values in brain activity [39].

•	 Percentiles (25th, 50th, 75th): These metrics help understand 
the distribution of brain activity in AD patients [39].

2.3.3. PSD metrics

•	 PSD peak/peak-to-peak: The highest power value and the 
difference between the highest and lowest power values. 
Changes in these metrics can indicate alterations in brain 
activity in AD patients [40].

•	 Delta/Theta/Alpha/Beta/Gamma power: The metric 
measures the power in specific frequency bands. AD 
patients typically show increased delta and theta power 
and decreased alpha and beta power [40].

•	 Ratios (r1, r2, r3): Ratios of power in different frequency 
bands are used to identify changes in brain activity. 
Altered ratios in AD patients can indicate changes in brain 
function [40].

2.3.4. Frequency domain metrics

•	 Maximum frequency: The highest frequency component 
in the EEG signal. Lower maximum frequencies in AD 
patients suggest reduced brain activity [16].

•	 Sum of frequencies: The total power across all frequencies. 
Changes in this metric can indicate alterations in overall 
brain activity in AD patients [16].

•	 Mean/median frequency: The average and median 
frequency of the EEG signal. Lower values in AD patients 
suggest a shift toward lower-frequency brain activity [16].

•	 Peak frequency: The frequency with the highest power. 
Changes in peak frequency can indicate alterations in 
brain activity patterns in AD patients [16].

•	 Skewness/kurtosis frequency: The metric measures the 
asymmetry and “tailedness” of the frequency distribution. 

Table 1. Overview of the database demographics
Group Number of subjects Age mean ± SD MMSE

C 102 72.2±5.3 N/A
MCI 7 67±7.6 N/A
AD 59 70.5±4.9 14.9±2.3
Abbreviations: AD: Alzheimer’s disease; C: Healthy controls; MCI: Mild 
cognitive impairment; MMSE: Mini‑mental state examination; N/A: Not 
available.; SD: Standard deviation.
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Table 2. Description of the features
Metric name Equation Variable description

Entropy metrics
Entropy sample
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2log

p (xi): Probability of the i ‑th state. N: The total number of 
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i
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Basic statistical metrics
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Table 2. (Continued)
Metric name Equation Variable description
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Power spectral density metrics
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Changes in these metrics can indicate alterations in brain 
activity in AD patients [16].

2.3.5. Fractal dimension and complexity metrics

•	 Number of zero-crossings: The number of times the EEG 
signal crosses the zero line, indicating signal variability. 
Fewer zero-crossings in AD patients suggest reduced 
variability in brain activity [40].

•	 Katz/Higuchi fractal dimension: The metric measures 
the complexity of the EEG signal by analyzing its fractal 
properties. Lower values in AD patients indicate reduced 
complexity [40].

•	 Detrended fluctuation analysis: The method assesses the 
long-term correlations in the EEG signal. Altered values in 
AD patients suggest changes in brain activity patterns [40].

•	 Petrosian fractal dimension: It measures the complexity 
of the EEG signal by analyzing the number of 
extrema. Lower values in AD patients indicate reduced 
complexity [40].

•	 Hjorth mobility/complexity: The metric measures the 
variability and complexity of the EEG signal. Lower 
values in AD patients suggest reduced variability and 
complexity in brain activity [40].

Table 2. (Continued)
Metric name Equation Variable description

Median frequency

f PSD f df PSD f df
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#

0 0
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μ2: Second moment (variance). μ4: Fourth moment.

Journal of Biological Methods  | Volume XX | Issue X |� 7



Rodrigues and Rodrigues� EEG time-frequency analysis for Alzheimer’s detection

2.4. Data organization

The data were organized into matrices of 14 rows and 
8170 columns for pairwise comparisons (C vs. MCI, AD 
vs. MCI, and C vs. AD). This format is compatible with 
Sci-learn ML models using Python DataFrame. The 14 rows 
correspond to individual patients, while the 8170 columns 
result from the analysis of 19 channels × 43 features × 10 
data compressors. The data were normalized using min-max 
normalization [41] for each group pair’s matrix columns 
(using all data from subjects within each binary group), as 
the distributions of the metrics are not significantly affected 
by outliers.

2.5. ML-based classification

The pairwise comparison matrices of features obtained 
in the previous step were presented, respectively, as input 
to 15 pre-designed and selected Sci-learn ML models [42] 
(Table 3). A 7-fold cross-validation process was employed 
for data discrimination. The 7 folds were chosen based on 
the number of EEG recordings per class.

The model’s performance was evaluated using a 
classification report with the following metrics [43]:

•	 Accuracy: It is calculated as TP TN
TP TN FP FN

+
+ + +

×100% . 

Accuracy represents the overall proportion of correct 
predictions made by the model. Here, TP (true positive) 
refers to predictions that are positive and actually positive, 
TN (true negative) refers to predictions that are negative 
and actually negative, FP (false positive) refers to 
predictions that are positive but actually negative, and 
FN (false negative) refers to predictions that are negative 
but actually positive.

•	 Recall: It is computed as TP
TP FN+

×100% . Recall 
indicates the proportion of actual positive cases that the 
model correctly identified.

•	 Precision: It is calculated using the formula 
TP

TP FP+
×100% . Precision measures the proportion of 

positive predictions that the model correctly identified.
•	 F1-score: It is calculated using the formula 2 

Precision Recall
Precision Recall

⋅
+

. The F1-score is the harmonic mean 

of precision and recall.
•	 Area under the curve (AUC): The AUC of the receiver 

operating characteristic curve is calculated using the 

formula 
−
∫ ( ) ( )( )
∞

∞

TPR t d FPR t , where TPR is the TP rate, 

FPR is the FP rate and t represents each classified 
instance. AUC measures the model’s ability to distinguish 
between classes.

3. RESULTS

Figure 2 illustrates the discrimination performance of the 
top-performing classifiers between group pairs, presented as a 
heatmap. The heatmap employs a green gradient color bar to 
visually represent the method’s discrimination power, based 
on recall, precision, and accuracy in pairwise comparisons. 
Lighter shades of green correspond to lower discrimination 
power, while darker shades signify higher discrimination 
power.

4. DISCUSSION

Table 4 compares the classification metrics obtained in the 
present study with those reported in state-of-the-art research. 
The present study stands out by achieving the highest accuracy 
and recall across most comparison pairs, with minimal 
underperformance in the AD versus MCI pair.

In particular, the study demonstrated superior performance 
of our strategy compared to existing methods, achieving 
100% accuracy in both the C versus MCI and C versus AD 
classifications. These results represent a 2% improvement 
in accuracy for C versus MCI and a 4% improvement for C 
versus AD over the state-of-the-art studies.

However, in the AD versus MCI classification, our study 
showed a slight underperformance in accuracy, with a 1% lower 
accuracy compared to the finding of Pirrone et al. [52], and a 
1.2% lower accuracy compared to the results of Rodrigues et 
al. [56] and Buscema et al. [45]. Despite this, it is important 
to highlight that the present study outperformed prior work by 
Cejnek et al. [22] on the same database, with a significant 4.8% 

Table  3. Classifiers used in the present study
Classifier Hyperparameters

AdaBoostClassifier Default parameters
BaggingClassifier Default parameters
DecisionTreeClassifier Default parameters
ExtraTreesClassifier Default parameters
GaussianNB Default parameters
GaussianProcessClassifier Default parameters
GradientBoostingClassifier Default parameters
KNearestNeighborsClassifier Default parameters
LinearDiscriminantAnalysis Default parameters
LogisticRegression Default parameters
LogisticRegressionCV Default parameters
MLPClassifier Default parameters
RandomForestClassifier Default parameters
SGDClassifier Default parameters
Support‑vector machines γ: “auto”
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Figure 2. Heatmap of the final report classification results.
Abbreviations: AD: Alzheimer’s disease; AUC: Area under the curve; C: Healthy controls; MCI: Mild cognitive impairment.

Table  4. Comparison of the final classification results with state‑of‑the‑art research
C vs. MCI AD vs. MCI C vs. AD

Authors Rec Spec Acc Authors Rec Spec Acc Authors Rec Spec Acc

Akrofi et al. [44] ‑ ‑ 90 Buscema et al. [45] 89 95 92 Huang et al. [46] 90 75 84
Aghajani et al. [47] 75 94 84 Cunha et al. [48] ‑ ‑ 89.7 Mellisant et al. [49] 93 95 94
Khatun et al. [50] 85 95 88 Huang et al. [46] 87 68 78 Petrosian et al. [51] 80 100 90
Pirrone et al. [52] ‑ ‑ 98 Poil et al. [53] 88 82 85 Cunha et al. [48] ‑ ‑ 81.4
Vialatte et al. [54] ‑ ‑ 93 Pirrone et al. [52] ‑ ‑ 93.8 Kulkarni [55] 92 96 94
Cunha et al. [48] ‑ ‑ 85.5 Rodrigues et al. [56] 92 96 94 Pirrone et al. [52] ‑ ‑ 95.9
Dauwels et al. [57] ‑ ‑ 83 Araujo et al. [58] ‑ ‑ 88.9 Tran et al. [59] ‑ ‑ 91
Rodrigues et al. [56] 100 97 98 Cejnek et al. [22] 91 85 88 Rodrigues et al. [56] 97 95 96
Araujo et al. [58] ‑ ‑ 78.9 Present work 100 92.8 92.8 Araujo et al. [58] ‑ ‑ 81
Present work 100 100 100 Zheng et al.[16] 96.4 97.4 95.8

Dogan et al. [60] 97.7 84.0 92.0
Present work 100 100 100

Abbreviations: Acc: Accuracy; AD: Alzheimer’s disease; C: Healthy controls; MCI: Mild cognitive impairment; Rec: Recall; Spec: Specificity; vs.: Versus.

improvement in accuracy for the AD versus MCI comparison. 
Although the present study used the same dataset as Cejnek 
et al. [22], we balanced the dataset in our study by randomly 
selecting seven EEG recordings from the MCI group in the 
original dataset. Therefore, comparisons between the two 
studies should be made with caution. Moreover, it should be 
noted that the MCI versus AD comparison is the only one to 
show accuracy results below 100% (92.86%). Patient age may 
influence these results, as the MCI and AD patients in this study 
are relatively younger (~70 years) compared to those in other 
state-of-the-art studies (e.g., [22], [45], and [56]), which could 
slightly complicate the discrimination process.

Despite the minor underperformance in AD versus MCI, 
the overall results of the present study are promising and 
represent substantial advancements in classification accuracy.

5. CONCLUSION

This study highlights the critical role of EEG in identifying 
distinct brain activity patterns in patients with AD in early 
and moderate stages. We trained an EEG-based ML model to 
differentiate between C, MCI, and AD. Utilizing a balanced 
EEG dataset, which included seven recordings from each 

class, we computed 43 time-frequency features from each 1-s 
segment of EEG data. These features were then compressed 
using 10 statistical measures, and 15 classifiers were applied 
within a 7-fold cross-validation framework to classify the 
different stages.

The algorithm performed well, achieving a 100% 
accuracy in both the C versus MCI and C versus AD 
classifications, representing a 2% and 4% improvement over 
existing methods, respectively. In addition, it achieved a 
4.8% improvement in AD versus MCI classification on the 
same dataset. However, it showed a slight 1.2% decrease in 
accuracy compared to the best-performing previous studies 
in AD versus MCI. These results underscore the potential of 
EEG for early AD diagnosis. Nevertheless, for more reliable 
generalization, future work should focus on a fair comparison 
with the state-of-the-art methods that use larger databases 
and align more closely with real-world clinical applications. 
Specifically, future studies should aim to enhance results 
using a larger population and applying the hold-out method 
(e.g., using 80% of the data for training and 20% for testing) 
instead of a cross-validation approach. This would help 
address the issue of unbalanced datasets. Techniques such 
as data augmentation or using a larger, more balanced dataset 
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could eliminate the need for undersampling, enhance model 
performance by providing a more representative dataset, and 
mitigate risks of model bias and overfitting. These strategies 
would improve generalization and robustness when applied 
to unseen data in future work using a train-test (hold-out) 
validation approach [61,62]. Ultimately, future studies should 
also explore different sliding window strategies (e.g., 25% or 
50% overlap) for data analysis, as this may improve the feature 
extraction process by capturing more continuous information. 
This approach would provide a more realistic assessment of the 
algorithm’s performance, particularly for clinical applications.
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