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ABSTRACT 

Somatic mutations are evolutionarily important as determinants of individual organismal fitness, as well as being a fo-
cus of clinical research on age-related disease, such as cancer. Identifying somatic mutations and quantifying mutation 
rates, however, is extremely challenging and genome-wide somatic mutation rates have only been reported for a few 
model organisms. Here, we describe the application of Duplex Sequencing on bottlenecked WGS libraries to quantify 
somatic nuclear genome-wide base substitution rates in Daphnia magna. Daphnia, historically an ecological model 
system, has more recently been the focus of mutation studies, in part because of its high germline mutation rates. 
Using our protocol and pipeline, we estimate a somatic mutation rate of 5.6 × 10-7 substitutions per site (in a genotype 
where the germline rate is 3.60 × 10-9 substitutions per site per generation). To obtain this estimate, we tested multiple 
dilution levels to maximize sequencing efficiency and developed bioinformatic filters needed to minimize false positives 
when a high-quality reference genome is not available. In addition to laying the groundwork for estimating genotypic 
variation in rates of somatic mutations within D. magna, we provide a framework for quantifying somatic mutations in 
other non-model systems, and also highlight recent innovations to single molecule sequencing that will help to further 
refine such estimates. 
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INTRODUCTION 

Efficient methods for detecting rare genetic variants are critical 
for both clinical applications and for basic biology [1,2]. Next 
generation sequencing (NGS) has been used extensively to identify 
germline variants, but the variant allele fraction (VAF) of many 
somatic mutations (in some cases < 0.01%) is well below the 
error rates associated with standard NGS, making the detection 
of somatic mutations challenging [1,3–5]. Single-molecule se-
quencing (SMS) technologies, however, dramatically reduce the 
error rates associated with high-throughput sequencing, poten-
tially enabling the interrogation of rare, subclonal variation by 
NGS (e.g., Safe-SeqS [1], Duplex Sequencing [6,7], smMIP [2], 
BotSeqS [8], Hawk-Seq [9], PECC-Seq [10], and NanoSeq [11]).

Generally, SMS methods reduce error rates by uniquely 
barcoding individual DNA molecules. Amplification of these 
uniquely barcoded templates produces PCR duplicates that, upon 
sequencing, can be grouped into ‘read families’ based on their 
shared barcodes (Unique Molecular Identifiers [UMIs]) [12]. 
Mutations present in the original molecule should be present in 
the majority of PCR duplicates, whereas errors introduced by 
PCR and sequencing will typically only be observed in a small 
subset. Most artifacts, therefore, can be identified and removed in 
the process of constructing a consensus sequence from each read 
family [1]. UMIs can be endogenous (e.g., the random sites of 
fragmentation at each end of a DNA molecule generated during 
library preparation) or exogenous (random ‘barcode’ sequences 
incorporated during library construction).
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The accuracy of SMS approaches is further enhanced by Du-

plex Sequencing [6,7,13,14], wherein the two strands of a target 
molecule are labeled with complementary UMIs so that read 
families, and consensus sequences, can be generated separately 
for each strand of the original template (Single Strand Consensus 
Sequences, SSCSs; Fig. 1). Complementary SSCSs can then be 
compared to generate Duplex Consensus Sequences (DCSs). 
Because true mutations alter the sequence of both strands, only 
complementary variants present in both read families are scored 
as mutations. In contrast to the first generation of SMS, Duplex 
Sequencing enables detection of errors that arise even in the 
first round of PCR. Schmitt et al. [6] showed that although non-
duplex-based SMS eliminated > 99% of technical errors, 90% 
of the remaining mutations were still artifacts. Applying Duplex 
Sequencing, however, further eliminated ~90% of mutations 
identified in single-strand consensus sequences. The theoretical 
background error rate of the duplex approach is < 1 error per 
109 nucleotides. Thus, first generation SMS methods, and, to a 
greater extent, Duplex Sequencing, filter out the vast majority of 
artifacts, while effectively detecting variants with low VAF [1,2,6]. 

However, two significant challenges remain when using Duplex 
Sequencing to estimate genome-wide somatic mutation rates. First, 
because SMS relies on sequencing of multiple PCR amplicons 
per template, it becomes prohibitively expensive as a method for 
comprehensively surveying large genomes [2,7]. In fact, many 
of these methods were specifically designed for assaying small 
genomes (< 1‒2 Mbp; [7,13]) or small target regions of large 
genomes [1,2,7,15]. Diluting (“bottlenecking”) samples prior to 
library construction is an additional refinement that allows for 
unbiased sub-sampling of the genome [8,9], reducing the amount 
of sequencing required to infer the genome-wide mutation rate 

(Fig. 2). In bottleneck approaches, DNA is diluted to a very 
low (attomolar) concentration. Drastically reducing the number 
of molecules in the library prior to amplification increases the 
fraction of remaining molecules that are sequenced redundantly 
(more than one PCR duplicate is sequenced per original DNA 
fragment). Dilution also produces a more even distribution of read 
family sizes [8]. Thus, bottlenecking is a simple way to reduce the 
ratio of raw reads to read families, thereby optimizing sequencing 
efficiency (the number of instructive read families generated per 
raw read) while sampling the genome in an unbiased fashion. 
However, determining the optimal dilution, the point at which 
the number of DCSs per raw read is maximized, is not trivial, 
and must be determined empirically by evaluating the sequencing 
efficiencies of libraries with a range of dilution levels.

Second, in addition to filtering out artifactual mutations re-
sulting from library preparation and sequencing, the inference 
of mutations is only as robust as the reference genome to which 
read families are compared. To date, only a few studies have 
utilized bottlenecked SMS approaches to estimate nuclear ge-
nome-wide mutation rates, and these studies have been limited 
to humans and mice [6,8–10]. By virtue of their focus on model 
organisms, all genome-wide Duplex Sequencing studies have 
had at their disposal high-quality, chromosome-level reference 
genomes. For most organisms, however, reference genomes of 
draft quality have hundreds or thousands of unordered scaffolds, 
likely containing numerous sequence and assembly errors and 
gaps. This adds a significant layer of complexity, and source 
of error, when trying to estimate somatic mutation rates, and 
strategies for adapting SMS approaches to non-model systems 
with draft-quality genomes are needed.

Figure 1 The Duplex Sequencing consensus-making process. Both strands of a DNA fragment are amplified, and amplicons with identical mapping 
locations and unique molecular identifiers (UMIs) (the first and last 15 bp, indicated [not to scale in the diagram] by magenta boxes) are grouped together 
to build a single strand consensus sequence (SSCS). The SSCSs generated from the two strands of the original fragment are then compared to one 
another to build a duplex consensus sequence (DCS). All reads must agree to form a consensus base for any given position. Blue lines represent strands 
of genomic DNA (gDNA), green notches represent bona fide mutations, red notches represent artifacts (PCR or sequencing errors), and gray notches 
indicate bases that have been marked as N and excluded from analysis.
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Figure 2 Schematic showing the importance of optimizing dilution for increased efficiency. The distribution of PCR duplicates produced per dsDNA 
fragment in undiluted (top) versus diluted (bottom) gDNA libraries. Blue double stranded combs in the tube represent dsDNA fragments, while single 
stranded blue combs represent PCR duplicates produced from the top and bottom strands of those fragments. In the undiluted library, many fragments 
are not sufficiently amplified and/or sequenced and thus cannot be used to build DCSs. In the diluted library, a high number of PCR duplicates per frag-
ment are produced, allowing more DCSs to be produced (green arrows) from the same number of reads.

Here, we provide guidance to address both of these challenges. 
First, we provide an example for how to identify the optimal 
dilution to maximize sequencing efficiency, and discuss how 
this optimum is influenced by the stringency of parameters used 
for DCS building. Second, we develop bioinformatic parame-
ters to mask problematic regions of the reference genome and 
limit our analysis to high-confidence regions in which somatic 
mutations could be called accurately. In doing so, we describe 
the application of bottlenecked Duplex Sequencing to estimate 
a nuclear genome-wide somatic mutation rate per generation in 
Daphnia magna, thereby providing a framework for expanding 
the use of SMS to non-model systems.

METHODS

Study system and experimental design
Daphnia magna descended from an individual collected in 

Israel (genotype ‘IA’; Ho et al. [16]) were reared in a 50 mL 
conical tube containing 35 mL of Aachener Daphnien Medium 
(ADaM) [17], and kept in a Percival™ environmental chamber 

set at 18℃ and 16:8 hour light:dark in the Schaack Lab (Reed 
College). Animals were fed algae (Scenedesmus obliquus) twice 
per week. At 60 days old, three individuals with empty brood 
pouches were collected in a single 1.5 mL microcentrifuge tube, 
flash frozen in liquid nitrogen and stored at −80oC prior to DNA 
extraction.

DNA isolation and quantification
DNA was extracted with DNAzol (Molecular Research Cen-

ter, Cincinnati, OH; DN127) as follows: Frozen samples were 
pulverized with a plastic pestle, then mixed with 200 µL of 
DNAzol and incubated at room temperature for 10 minutes. A 
total of 100 µL of 100% EtOH was added to each sample, mixed 
thoroughly and centrifuged for 5 minutes at 15,000 xg. Super-
natant was discarded, and the pellet was washed with a mixture 
of 70% DNAzol and 30% EtOH, followed by a second wash 
with 70% EtOH. After removing the supernatant, the pellet was 
air dried for 1 minute, then resuspended in 30 µL TE buffer (10 
mM Tris-HCl, pH 8.0; 0.1 mM EDTA). DNA was treated with 
RNAse If  (New England Biolabs, Ipswich, MA; M0243) for 
10 minutes at room temperature, purified using the DNA Clean 
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& Concentrator-25 Kit (Zymo Research, Irvine, MA; D4033) 
according to the manufacturer’s protocol, and eluted in 30 µL 
TE buffer. DNA concentration was measured with a Qubit 4.0 
using the Qubit 1x dsDNA High Sensitivity kit (Thermo Fisher 
Scientific, Waltham, MA; Q33230).

Library construction and sequencing
The initial steps of library construction, up to PCR amplifi-

cation, were performed using the NEBNext Ultra II FS DNA 
Library Prep kit (New England Biolabs; E6177) according to 
the manufacturer’s protocol, using 115 ng of DNA as input. The 
DNA was subjected to fragmentation (15 minutes at 37oC), end 
repair and dA-tailing in a single reaction tube using the Frag-
mentation Reagent supplied with the kit, followed by NEBNext 
hairpin adapter ligation. Size selection was performed using 
NEBNext Sample Purification Beads, targeting a library size of 
400‒600 bp (insert sizes of 275‒475 bp). Unamplified library 
concentration was assessed by Qubit as described above, and 
fragment size distribution was assessed by Agilent 2100 Bioan-
alyzer and High Sensitivity (HS) DNA Chip at the GPSS core 
facility at Oregon Health & Sciences University. Based on the 
concentration estimated by Qubit and average fragment size 
estimated by Bionanalyzer, the library was serially diluted to 10 
amol/15 µL, 50 amol/15 µL, 100 amol/15 µL, 150 amol/15 µL, 
and 1000 amol/15 µL. Then, 15 µL of each diluted library was 
then amplified in a 50 µL PCR reaction to incorporate unique dual 
indices (NEBNext Multiplex Oligos for Illumina [Dual Index 
Primers Set 1]; Table S1) on each DNA fragment and produce 
multiple copies per fragment. For this step, if too few PCR cycles 
are used, insufficient template will be generated for sequencing. 
Conversely, over-amplification has been shown to produce high 
molecular weight artifacts [7]. Because the optimal number of 
cycles is dictated by the amount of input DNA, each dilution 
required a different number of cycles. Based on the guidelines 
in the NEBNext Ultra II FS library protocol (Dual Index Kit 1; 
New England Biolabs; NEB#7600S), the 10 amol, 50 amol, 100 
amol, 150 amol, and 1000 amol libraries were amplified for 11, 
14, 14, 16, and 18 PCR cycles, respectively, which yielded ap-
proximately 100 ng of DNA per library while avoiding high MW 
artifacts. Library quality was assessed by Agilent TapeStation at 
MedGenome, and average fragment sizes were 287 bp, 423 bp, 
387 bp, 415 bp, and 430 bp for the 10 amol, 50 amol, 100 amol, 
150 amol, and 1000 amol libraries, respectively. Libraries were 
pooled and sequenced (2×150 bp paired end) on an Illumina 
HiSeq X at MedGenome (https://research.medgenome.com/). 
The raw sequencing data (Fastq files) are deposited in the NCBI 
Sequence Read Archive (BioProject PRJNA871294).

Bioinformatic analysis
The bioinformatic pipeline to generate consensus reads was 

developed by Brendan Kohrn and the Kennedy lab [7]; (https://
github.com/Kennedy-Lab-UW/Duplex-Seq-Pipeline) and was 

implemented with the following modifications and parameters 
(summarized in Table S2). The first 12 bases from each read in a 
read pair (which define the first and last 12 bases of the sequenced 
insert) were used as endogenous molecular barcodes, in contrast to 
ligating exogenous barcodes to the ends of inserts during library 
preparation as described by Kennedy et al. [7]. Additionally, 15 
bp were cut from the 5’ ends of reads (including the 12 bp used 
to generate duplex tags) prior to mapping. This additional end 
clipping is based on empirical observations that mutations are 
found in excess near the ends of inserts that are likely explained 
by errors introduced as a result of DNA fragmentation and end 
repair [7,11]. Reads were then aligned to the reference genome 
for the IA genotype assembled by Ho et al. [17] using bwa-mem 
[18,19]. Unmapped reads (bitwise flag values of 77 and 141) 
were filtered out of the dataset. 

Reads that mapped to the same genomic location and shared 
identical endogenous barcodes were considered PCR duplicates 
of the same DNA insert and were grouped into read families, 
with separate families generated for R1 and R2 reads. Within 
a read family, only reads sharing the most common Compact 
Idiosyncratic Gapped Alignment Report (CIGAR) string were 
retained. Read families were discarded if fewer than two such 
reads remained. For the remaining read families, the retained 
reads were used to generate a single-strand consensus sequence 
(SSCS). SSCSs mapping to the same location in the genome 
and with complementary endogenous barcodes (indicating they 
were produced from opposite strands of the same insert) were 
then used to make duplex consensus sequences (DCSs). During 
both single strand and duplex consensus making, all reads were 
required to agree at a given position, otherwise that base was 
marked as N. DCSs were then aligned to the reference genome 
using bwa-mem [18,19], and any unmapped DCSs were filtered 
out of the dataset. In addition to filtering out unmapped DCSs, 
we removed improperly paired alignments, and DCSs were re-
quired to have a minimum mapping quality of 55, an insert size 
between 20 and 500 bp, and to align uniquely to a single locus. 
Non-unique alignments were filtered out by requiring consensus 
reads to have a suboptimal alignment score (XS:i flag assigned by 
bwa-mem) equal to zero. Variant calling was then performed on 
the consensus reads using bcftools [20,21]. For determining the 
optimal dilution, a random sample of 50 million read pairs from 
each library was run through the pipeline as described above.

Identifying and masking problematic genomic 
intervals

Variants were only considered to be valid if they fell outside 
masked regions of the genome. We excluded variants at hetero-
zygous sites identified by Ho et al. [17], and identified genomic 
intervals for masking in 3 different ways: regions flagged by 
RepeatModeler or RepeatMasker [22,23], regions of unusually 
high coverage in the reference genome assembly, and windows of 
500 bp containing more than 3 variants. Regions with high cov-
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erage in the reference genome were masked since they represent 
sites of potential mapping errors. Such regions were identified by 
mapping the reads used to build the reference assembly back to 
the reference assembly, generating coverage graphs using bed-
tools genomecov, and masking intervals with more than double 
the expected coverage of 40x. 

To identify regions with a high density of variants, the genome 
was divided into 500 bp sliding windows, incrementing by 100 
bp, using bedtools makewindows [24], and intervals with > 3 
variants were identified. Once bed files of all four intervals to be 
masked were made, the intervals in each bed file were extended 
by 500 bp using the bedtools slop utility [24]. Then, we used 
bedtools to merge and sort the three sets of filtered intervals, 
and subtracted them from the bed file of the whole genome to 
generate the masked genome. To identify variants in the masked 
genome, we intersected the masked genome with the list of initial 
variants called by bcftools. Each of the 120 remaining variants 
was manually inspected using IGV [25]. We manually excluded 
variants with a variant allele fraction over 0.5 in cases where a 
locus was covered by multiple DCSs, or where the reads used to 
build the reference genome showed heterozygosity at that locus. 
Variants in regions of the reference assembly not covered by reads 
used to build the reference assembly were also manually masked.

RESULTS AND DISCUSSION

Optimizing efficiency
The goal of bottlenecking (diluting) a genomic library is to 

optimize the number of consensus sequences generated per read 
(Fig. 2). Because Duplex Sequencing relies on redundantly se-
quencing individual DNA fragments, optimizing the dilution is 
a critical step in bottleneck sequencing. The optimal amount of 
input DNA should strike a balance between being low enough 
that most fragments are amplified and sequenced with some 
redundancy, but high enough to avoid excessive redundancy. 
When only one copy of a DNA fragment is sequenced, it cannot 
be analyzed because no consensus sequence can be generated. 
Conversely, over-dilution results in unnecessary and wasteful 
resequencing of the few DNA fragments retained in the library. 

The lowest DNA input (10 amol) was most efficient
To identify the optimal input of DNA for maximizing sequenc-

ing efficiency, we generated a single DNA library then serially 
diluted it to obtain five different DNA input amounts for PCR 
amplification (10 amol, 50 amol, 100 amol, 150 amol, and 1000 
amol) and sequencing. Consensus-making efficiency varies with 
the number of input reads [8,9], so it is necessary to control for 
differences in input read number when evaluating the sequencing 
efficiencies of different dilutions. Because the number of read 
pairs produced per library varied from 51.7‒115.5 M, we downs-
ampled four of the five libraries (excluding the 150 amol library) 
to 50 M read pairs prior to consensus building and comparison 

(Table 1). We did not analyze a downsampled 150 amol library 
because a clear picture emerged from the other four libraries 
(Fig. 3) that an input of 10 amol or less is optimal (see below).

Figure 3 shows the relationship between DNA input amount 
and two different measures of sequencing efficiency (DCSs per 
read pair and DCS bases per 50 M reads). While efficiency can be 
assessed based on the total number of DCSs generated per read 
(total DCSs per read; light blue bars in Fig. 3), in practice not 
all DCSs can be mapped with high confidence (e.g., many map 
to multiple locations in the genome), and those with ambiguous 
or irregular mapping must be discarded. Thus, DCSs per read 
after filtering problematic DCSs (filtered DCS per read; dark blue 
bars in Fig. 3) may be a more realistic measure of efficiency, 
and will vary from project to project due to technical artifacts 
associated with library construction, reference genome assembly, 
and mapping. A related measure of efficiency is the DCS bases 
per 50 million reads, which gives an indication of the breadth 
of genomic space that can be surveyed with a given amount of 
sequencing power (colored lines; Fig. 3).

The 10a library had the highest raw (unfiltered) DCS making 
efficiency, generating approximately one DCS per 75 input read 
pairs (1.34% efficiency). The 50a library was roughly half as 
efficient (0.63% efficiency, ca. one DCS per 160 read pairs), but 
still performed better than the 100a and 1f libraries (efficiencies 
of 0.38% and 0.02%, ca. one DCS per 260 and 5000 read pairs, 
respectively). The sequencing efficiency we observed at 10 amol 
is similar to that obtained in Salmonella (~1.8%) by Matsumura 
et al. [9]. Our efficiencies, however, were consistently lower 
than those of Matsumura et al. [9] at higher input amounts, and 
while Matsumura et al. [9] found an optimal dilution range of 
39‒156 amol for 50 M read pairs, our distribution of sequencing 
efficiencies suggests that the optimal dilution is at or near 10 
amol (Fig. 3). 

In addition to evaluating DCS making efficiency, we compared 
the read family distributions and peak family sizes for all four 
downsampled libraries (Fig. S3). Peak family size, defined by 
Kennedy et al. as the read family size > 1 accounting for the 
highest proportion of reads [7], is another common metric for 
determining the optimal input DNA amount. Kennedy et al. [7] 
found that a peak family size between 6 and 12 is ideal for maxi-
mizing the number of reads that can be grouped into read families 
and used to build DCSs, while not being overly redundant. The 
50 amol, 100 amol, and 1000 amol libraries all had a peak family 
size of 2, while the 10 amol library had a peak family size of 8 
(triangles on colored lines; Fig. S3), indicating that all libraries 
except for the 10 amol one is insufficiently dilute, while the 10 
amol library is within the optimal 6‒12 range. Furthermore, the 
read family distribution of the 10 amol library is highly similar 
to the ideal scenario depicted by Kennedy et al. [7]. Since the 
10 amol library had the best DCS making efficiency, read fam-
ily distribution and peak family size, we conclude that 10 amol 
represents the optimal dilution of DNA among those tested.

The difference between our optimal dilution and that of Matsu-
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mura et al. [9] may be explained in part by experimental error in 
the estimation of DNA concentrations - for example, Matsumura 
et al. used Bioanalyser-based estimates of library concentration 
whereas we used Qubit-based estimates. The primary explanation 
for the observed differences, however, is likely that we required a 
minimum of two read pairs per SSCS whereas Matsumura et al. 
[9] only required one. Thus, our DCS assembly strategy was more 
stringent, but at the expense of fewer total DCSs per input. Our 
requirement for two read pairs per SSCS was also used by Hoang 
et al. [8], whereas Kennedy et al. [7] require three read pairs, 
so our approach represents a middle ground between previously 
published methods with regard to stringency. Finally, another 
likely explanation is that our reference genome assembly is less 
complete and of lower quality than those used by Matsumura et 
al. [9], resulting in lower mapping efficiency, which is consistent 

with the fact that there were large differences between total DCS 
per read and filtered DCS per read (Fig. 3). The 10a library also 
yielded the most DCS bases per read (Fig. 3). It is possible that 
even higher efficiency without a reduction in coverage might 
have been obtained by using less than 10 amol of input DNA. 
The order of magnitude between our optimum and that reported 
in Matsumura et al. [9] highlights the fact that the optimal input 
will vary depending on both the quality of the reference genome 
and the consensus-building criteria, and should be determined 
empirically rather than simply taken from other studies. Recently, 
a strategy was described to “rescue” reads that fail to group into 
read families due to PCR or sequencing errors [26] that has the 
potential to increase sequencing efficiency further and warrants 
further exploration.

Figure 3 Efficiency of consensus sequence generation by library dilution. Consensus-making efficiency metrics for four diluted libraries of D. magna 
gDNA down-sampled to 50 M read pairs per library. On the left, the number of DCSs per input read pair (both before and after DCS filtering steps). Filter-
ing removed DCSs if the underlying read pairs mapped improperly, if the DCS was derived from an insert < 20 bp or > 500 bp, if the DCS mapped with 
a low alignment score, or if the DCS mapped equally well to multiple locations in the reference genome [see methods]). On the right, genome coverage 
based on the 50 M reads is plotted (orange line) for each dilution level.

Variants were filtered by masking the genome
We next used the full datasets (not downsampled to 50 M read 

pairs) from all five dilutions (Table 1, Fig. S1) to identify vari-
ants and estimate a genome-wide somatic mutation rate. Across 
the five libraries, consensus reads identified 126,670 putative 
variants (Fig. 4), an unrealistically large number. Consequently, 
we identified several criteria by which to identify and remove 
likely artifacts (Fig. 4). First, the majority of these variants (73%) 
were removed by excluding known heterozygous sites. Of the 
remaining 34,245 surviving this filter, many were densely clus-
tered in regions with unusually high coverage in the reference 

genome assembly. High read coverage and variant frequency is 
characteristic of assembly errors in reference genomes assem-
bled using short read data, such as ours. Due to the difficulty of 
accurately constructing contigs of repetitive DNA out of short 
reads, many repetitive regions are artificially collapsed into a 
single locus. If multiple copies are subsequently recovered in 
Duplex Sequencing, they will falsely map to one locus, and the 
erroneous mapping will cause sequence differences to be called 
as variants.
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Table 1 Consensus-making statistics for five dilutions of a D. magna gDNA-Seq library.

Dataset* Dilution (amol of DNA used as input)

10a 50a 100a 150a 1f Pooled**

Full Input read pairs (×106) 51.7 88.4 72.9 115.5 107.1 435.6

Total DCS 655072 902770 422378 493156 37860 2511236

Total DCS bases (×106) 77.0 114.0 45.0 57.0 46.0 339.0

Filtered DCS 148771 171002 152820 153884 9663 636140

(% of total DCS) (22.7) (18.9) (36.2) (31.2) (25.5) (25.3)

Filtered DCS bases (×106) 11.1 15.3 12.3 13.7 1.0 53.4

(% of total DCS bases) (14.4) (13.4) (27.3) (24.0) (2.2) (17.8)

Avg filtered DCS length (bp) 74 89 80 89 99 83

Filtered DCS bases in masked genome (×106) 4.79 6.71 5.30 6.00 0.39 23.19

Downsampled Input read pairs (×106) 50.0 50.0 50.0 nd 50.0 nd

Total DCS 644041 308193 191903 nd 8002 nd

Total DCS bases (×106) 42.8 24.2 14.0 nd 0.6 nd

Filtered DCS 147195 100136 76179 nd 1846 nd

(% of total DCS) (22.9) (32.5) (39.7) nd (23.1) nd

Filtered DCS bases (×106) 10.9 9.5 6.2 nd 0.2 nd

(% of total DCS bases) (25.5) (39.4) (44.3) nd (28.9) nd

Avg filtered DCS length (bp) 74 95 81 nd 100 nd

Filtered DCS bases in masked genome (×106) 4.71 4.15 2.64 nd 0.07 nd

Peak read family size 8 2 2 nd 2 nd

*Dataset: statistics are shown for the analysis pipeline run on the full set of read pairs generated per library ("Full") or on libraries downsampled to 50 M 
read pairs each ("Downsampled").  
**Pooled: Reads from all five diluted libraries were combined and analyzed together (full datasets only). The pooled dataset was used to identify the final 
set of 14 putative somatic mutations described below.  
nd, no data.

Fortunately, the presence of such regions in the reference ge-
nome can be diagnosed using tools to identify repeats. We applied 
three filters to mask repetitive regions (Fig. 4). First, we masked 
regions flagged by RepeatMasker and RepeatModeler [22,23]. 
Then, we masked regions of the original reference assembly with 
excessive read coverage (more than double the median). Lastly, 
regions of the genome with more than 3 variants per 500 bp 
sliding window were masked, as such sites are likely to represent 
genome assembly and/or mapping errors. After all masking steps, 
45.3 Mbp of the 120 Mbp genome assembly remained (38%). 
Within these 45.3 Mbp, 21 Mbp (47%) were covered by a total 
of 23.2 Mbp of DCSs from all libraries combined (Table 1), 
meaning we were able to detect somatic mutations in 17.5% of 
the sequenced genome.

Collectively, these filters removed > 99.9% of variants from 
the initial, unmasked set (Fig. 4), leaving 120 putative somatic 
mutations. These variants were manually inspected in IGV (Thor-
valdsdottir et al., 2013) to exclude variants with a variant allele 
fraction over 0.5 in cases where a locus was covered by multiple 
DCSs, or where the reads used to build the reference genome 
showed heterozygosity at that locus. Variants in regions of the 
reference assembly lacking read coverage (regions where the 

sequence comes from the genome used as a scaffold [17]) were 
also excluded. This left a final set of 14 putative somatic variants 
(Table 2) in the approximately 18% of the genome in which we 
were able to look for somatic mutations. The frequencies of the 
different mutation types are given in Table S3, although little 
can be gleaned from these frequencies due to the small sample 
size (n=14).

93% of putative somatic variants were confirmed 
to not be germline mutations

As noted by Hoang et al. [8], because somatic mutations are 
both ephemeral and typically found at extremely low VAF, they 
are, potentially, impossible to validate. However, it is possible 
to use other methods to ensure that variants detected are not, in 
fact, germline mutations. We assessed the validity of the final set 
of 14 putative mutations by Sanger sequencing using the leftover 
fractions of each library not used for Illumina sequencing. For 
each mutation, we PCR amplified and Sanger sequenced the 
relevant region in both the original, undiluted library, as well 
as in the relevant diluted library from which the mutation was 
called (10 amol, 50 amol, 100 amol, 150 amol, and 1000 amol). 
In 13 out of 14 cases (93%), the mutation was not observed in the 
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undiluted library, confirming that the mutation is not a germline 
variant. In the 14th case, the undiluted library only exhibited the 
putative mutation, indicating that the putative variant was not a 

somatic mutation, and that it is either a mis-call in the reference 
genome or a de novo germline mutation that became fixed in 
the population subsequent to sequencing the reference genome.

Figure 4 Variants representing putative somatic mutations sequentially excluded by each masking filter. Numbers indicate how many variants 
remained after removing heterozygous sites, regions annotated by RepeatMasker, windows with high read pileup in the original reference genome, 
windows with more than 3 variants per 500 bp, and then variants manually excluded. 

Table 2 List of the 14 putative somatic mutations that passed all filter-
ing steps.

Mutation Centralization of this column Library

C→A CCT 100 amol

C→A ACG 100 amol

T→A GTT 100 amol

C→A GCT 50 amol

C→G TCG 100 amol

T→C GTG 100 amol

C→A TCT 100 amol

C→A ACA 100 amol

C→A TCG 100 amol

T→A ATG 150 amol

C→A ACT 100 amol

C→T ACT 100 amol

C→T TCA 10 amol

T→C* GTA 100 amol

*Putative variant was shown by Sanger Sequencing to be fixed in the pa-
rental population.

None of the 13 non-germline mutations were observed in the 
Sanger traces from their originating diluted library. Thus, we 
were not able to demonstrate definitively that any of the called 
variants are true somatic mutations. This is not surprising given 
that somatic mutations are often present at very low VAF (<< 
1%), potentially affecting only one or a few cells. Although the 
bottlenecking step would be expected to greatly increase the 
VAF, we estimate that our highest input library (1000 amol) 
started with an amount of DNA equivalent to roughly 987‒1909 
genome copies, and our lowest input library (10 amol) started 
with an amount of DNA equivalent to 9.8‒19.9 genome copies 
(See Supplementary Results, Table S4). Therefore, even in the 
10 amol library, recovered somatic variants could affect less than 
10% of copies at the locus in question, and it is unlikely that such 
variants would present discernible peaks above background in 
Sanger traces. Consequently, though we established that 13 out 
of 14 of the putative mutations are not previously undetected 
germline variants, the data are inconclusive as to whether they 
represent false positives in the bottlenecked libraries or true 
variants at VAFs below the detection limit of Sanger sequencing. 
However, because Duplex Sequencing requires evidence from 
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both DNA strands to call a mutation, complementary errors 
affecting both DNA strands, either during PCR or sequencing, 
would be required for artifacts to be called as variants. The 
likelihood of such “jackpot” errors is less than one per 1 billion 
bases sequenced [6], so we can be reasonably confident that these 
13 putative variants represent true, in vivo mutations (but see 
Supplementary Information for discussion of potential sources 
of error associated with endogenous UMIs, and especially library 
preparation, as well as recently proposed modifications to further 
lower false positive rates).

The estimated somatic mutation rate is two orders 
of magnitude higher than the germline mutation 
rate

The 13 somatic variants identified in 23.2 Mbp of analyzed 
consensus sequence yields a mutation rate of 5.6 × 10-7 per base 
pair. This rate is ca. 6‒60 times higher than the reported error 
rate for Hawk-Seq [9], and 560 times higher than the theoretical 
error rate for Duplex Sequencing [6], suggesting that errors have 
not inflated the estimate appreciably. Furthermore, our estimate 
is roughly two orders of magnitude higher than the germline 
rate of 3.60 × 10-9 estimated by Ho et al. [17]. This ratio of 
somatic to germline mutation rates is similar to those found in 
both humans and mice [27], lending plausibility to our somatic 
mutation rate estimate.

By necessity, we sampled only a subset (18%) of the genome, 
so our mutation rate may differ from the true average rate for 
the entire genome. Mutation rates are known to vary greatly 
across genomic features, and repetitive elements such as simple 
repeats and transposable elements are likely to mutate at a rate 
that differs from the genomic average due to factors, such as 
transcription level, chromatin status, and gene content [28,29]. 
Furthermore, it is important to note that we extracted DNA from 
whole individuals, rather than isolating tissues. So our somatic 
mutation rate represents an average across all tissues, and the 
rates and mechanisms by which different tissue types accumulate 
mutations are likely to be variable [8]. Our mutation rate there-
fore provides an estimate of the frequency of mutations in the 
less repetitive subset of the D. magna genome. Though this rate 
may differ from that of the whole genome, the sampled fraction 
is enriched for functional elements (e.g., genes and regulatory 
sequences) so the rate we obtained is likely to be of the greatest 
relevance to clinical and basic biology. 

CONCLUSION

Duplex Sequencing is one of the most sensitive and error-free 
methods for detecting rare somatic mutations [3,5,7,14,30], while 
bottlenecking is an effective way to apply Duplex Sequencing 
to survey large genomes in an unbiased fashion [8]. However, 
these approaches have not previously been applied to organisms 

lacking high-quality reference genomes. Here, we presented 
guidelines for optimizing library dilution for efficient Duplex 
Sequencing, and applied this approach to call rare variants in D. 
magna, a species with a draft reference assembly. Due to the draft 
quality genome, it was necessary to mask problematic regions 
of the assembly from analysis in order to separate signal from 
noise. We masked regions of the reference assembly with repeat 
annotations, unusually high contributing read coverage, and 
unusually high variant density, drastically reducing the number 
of false positives stemming from mapping errors. We detected 
a per-base somatic mutation rate approximately two orders of 
magnitude higher than the germline mutation rate for the same 
genotype of Daphnia. Thus, we have added to the short list of 
species for which genome-wide rates of both germline and so-
matic mutation rates have been estimated. This ratio of germline 
to somatic mutation rates is in line with those found in other 
species, suggesting that SMS, in combination with our strategies 
for filtering variants, enables accurate estimation of somatic 
mutation rates in organisms with imperfect genome assemblies. 
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