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ABSTRACT

In preparation to create a clinical assay that predicts 1-year survival status of advanced heart failure (AdHF) patients 
before surgical/interventional therapies and to select the appropriate clinical assay platform for the future assay, we 
compared the properties of next generation sequencing (NGS) used in the gene discovery phase to the NanoString 
platform used in the clinical assay development phase. In 25 AdHF patients in a tertiary academic medical center from 
2015 to 2016, PBMC samples were collected and aliquoted for NGS RNA whole transcriptome sequencing and com-
pared to 770 genes represented on NanoString’s PanCancer IO 360 Gene Expression research panel. Prior to statistical 
analysis, NanoString and NGS expression values were log transformed. We computed Pearson correlation coefficients 
for each sample, comparing gene expression values between NanoString and NGS across the set of matched genes 
and for each of the matched genes across the set of samples. Genes were grouped by average NGS expression, 
and the NanoString-NGS correlation for each group was computed. Out of 770 genes from the NanoString panel, 734 
overlapped between both platforms and showed high intrasample correlation. Within an individual sample, there was 
an expression-level dependent correlation between both platforms. The low- vs. intermediate/high-expression groups 
showed NGS average correlation 0.21 vs. 0.58–0.68, respectively, and NanoString average correlation 0.07–0.34 vs. 
0.59–0.70, respectively. NanoString demonstrated high reproducibility (R2 > 0.99 for 100 ng input), sensitivity (probe 
counts between 100 and 500 detected and quantified), and robustness (similar gene signature scores across different 
RNA input concentrations, cartridges, and outcomes). Data from NGS and NanoString were highly correlated. These 
platforms play a meaningful, complementary role in the biomarker development process.

Keywords: advanced heart failure, biomarker, NanoString, next generation sequencing, prediction test

INTRODUCTION

The explosion of high throughput technologies available for gener-
ating large-scale molecular measurements has accelerated biomarker 
development [1]. A biomarker is defined as a biological characteristic 

that is objectively measured and evaluated as an indicator of biological 
processes or a pharmacologic response to a therapeutic intervention 
[2]. An important use of biomarkers is the identification of predictive 
and prognostic factors in disease management. We are interested in 
identifying biomarkers in heart failure (HF), and more specifically, 
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advanced heart failure (AdHF).
HF is a cardiovascular syndrome that results from a mismatch be-

tween demand and supply of oxygenated blood, leading to progressive 
organ dysfunction and organ failure [3]. This disease affects more than 
20 million people worldwide—6 million persons in the US alone—and 
is a major public health concern due to its tremendous societal and 
economic burden. The estimated cost of treating HF was $37 billion in 
2009 and is expected to increase to $97 billion by 2030 [4,5].

The mortality risk in AdHF patients depends on a complex combination 
of demographic, biological and physiological parameters. Some patients 
with AdHF are, despite having similar HF severity and stage [4,5], more 
frail [6], immunologically compromised, and susceptible to multi-organ 
dysfunction. The chronic immune system activation that characterizes and 
exacerbates AdHF can be measured by gene activity [7-13].

Our previous study shows that, in AdHF patients undergoing me-
chanical circulatory support implantation, preoperative peripheral blood 
mononuclear cell (PBMC) gene expression profile (GEP) can assist in 
predicting early changes in organ function scores and correlates with 
long-term outcomes. The results indicate that a set of 28 differentially 
expressed genes (DEGs) can predict day 8 organ function, 105 DEGs 
correlate to 1-year survival status, and 12 genes overlap between the 
two gene sets [14].

Now, we aim to create a clinical test that predicts 1-year survival 
status of individual AdHF patients before any type of HF surgical/in-
terventional therapy, such as mechanical circulatory support surgery or 
heart transplantation [15-17]. Our HF-survival prediction development 
strategy consists of a candidate gene discovery phase, followed by a 
lockdown of a gene list on a clinical-commercial platform.

Gene discovery of the whole-transcriptome using next generation 
sequencing (NGS) is a key phase of the biomarker test development. 
NGS is rapidly becoming the method of choice for transcriptional 
profiling experiments. High throughput sequencing allows identifi-
cation of novel transcripts and does not require a sequenced genome. 
Whole-transcriptome analysis can provide information on rare transcripts, 
splice variants and non-coding RNAs, which can characterize complex 
phenotypes. NGS can also perform unsupervised RNA GEP tests, which 
can provide great flexibility, sensitivity, and accuracy in gene expression 
measurements [18]. In the commercial test development process, NGS 
is only used to discover candidate genes.

NanoString Technologies is a leading platform for the translation of 
test development into clinical practice [19]. This closed platform hybrid-
ization-system has clearly defined transcript detection and measurements 
that are not suitable for gene discovery. NanoString has in-built properties 
that help to avoid bias, because it does require neither library construction, 
enzymes, nor processing. The NanoString method works in less-than-
ideal conditions, because it does not require the conversion of mRNA 
to cDNA by reverse transcription nor the amplification of the resulting 
cDNA by PCR. Instead, it is based on direct digital detection of mRNA 
molecules of interest using target-specific, color-coded probe pairs [18].

The goal in transcriptome biomarker development is an optimal 
alignment of performance of the discovery and commercial platforms. 
In the era of DNA-hybridization arrays and RT-PCR used for discovery 
and commercialization, the concordance was in the range of < 50% 
of candidate genes [20]. We were interested in examining this ques-
tion for the state-of-the art contemporary platforms for discovery and 
commercialization, NGS and NanoString. Therefore, in this study, we 

compare the general performance of the NGS discovery platform and the 
NanoString commercial platform, using NGS RNA whole transcriptome 
sequencing in comparison to 770 genes represented on NanoString’s 
PanCancer IO 360 Gene Expression research panel. Based on the work 
presented in this paper and further biomarker test development for the 
identification of DEGs between patients who did and did not survive 
1-year post-HF surgical / interventional therapies, subsequent analysis 
will be needed to confirm the results generated in this study.

MATERIALS & METHODS

Patients
We conducted a study with 25 AdHF patients undergoing guidelines 

directed medical therapy (n = 11), mechanical circulatory support 
surgery (n = 4) or heart transplant surgery (n = 10) [20] at UCLA 
Medical Center between August 2015 and 2016 under UCLA Medical 
Institutional Review Board-approved protocol number 12-000351. 
All patient treatments were optimized based on the recommendations 
of the multidisciplinary heart transplant selection committee. Written 
informed consent was obtained from each participant [21]. Demographic 
variables are presented in Table 1.

Table 1. Demographics (n = 25). 

Patient # Age (yr) HF intervention Gender 1-year 
survival

1 69 HFC Male Yes

2 67 MCS Male No

3 73 HFC Male No

4 23 HTx Male Yes

5 65 HTx Male Yes

6 45 HFC Male Yes

7 56 HTx Male Yes

8 48 HTx Male Yes

9 73 HFC Male Yes

10 71 HTx Male Yes

11 47 HFC Male Yes

12 46 HFC Male Yes

13 42 HFC Male Yes

14 57 HTx Male No

15 22 HTx Male No

16 21 HFC Female Yes

17 59 HTx Male Yes

18 57 MCS Male Yes

19 66 HTx Male Yes

20 60 HFC Male Yes

21 53 MCS Male Yes

22 50 HTx Male Yes

23 64 HFC Male Yes

24 21 MCS Male Yes

25 69 HTx Male Yes
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Sample collection, processing and RNA purification
Eight ml of blood was drawn into Vacutainer cell preparation tubes 

(CPT) (Becton Dickinson, Franklin Lakes, NJ) for purified RNA anal-
ysis. PBMC from each sample was purified within 2 h of phlebotomy. 
We focused on the mixed PBMC population, based on our successful 
AllomapTM biomarker test development experience [18,20-21].

The collected blood from CPT tubes was mixed and centrifuged 
at room temperature (22°C) for 20 min at 3000 RPM. The cell layer 
was collected, transferred to 15 ml conical tubes, re-suspended in 
cold phosphate buffer saline (PBS) (Sigma-Aldrich, St. Louis, MO) 
and centrifuged for 20 min at 1135 RPM at 4°C. The cell pellet was 
re-suspended in cold PBS, transferred into an Eppendorf tube and cen-
trifuged for 20 min at 5.6 RPM at 4°C. The pellet was re-suspended in 
0.5 ml RNA Protect Cell Reagent (Qiagen, Valencia, CA) and frozen 
at −80°C. Then, RNA was isolated from the PBMC using RNeasy 
Mini Kit (Qiagen, Valencia, CA). The quality of the total RNA was 
assessed using NanoDrop® ND-1000 spectrophotometer (NanoDrop 
Technologies, Wilmington, DE) and the concentration using Agilent 
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). The samples 
with concentration above 50 ng/µl, purity 260/280 ~2.0, integrity RIN 
> 9.0 and average > 9.5 were used in the study. Technical details on 
this protocol have been published on the LifeSciences Protocol Re-
pository Website at: https://www.protocols.io/ (DOI number dx.doi.
org/10.17504/protocols.io.jujcnun). In order to conduct a comparison 
analysis between the NGS and the NanoString platforms, 25 purified 
RNA samples were aliquoted in two sets.

PBMC transcriptome next generation sequencing analysis
One set of aliquoted RNA was processed using NGS transcriptome 

analysis at the UCLA Technology Center for Genomics & Bioinformatics. 
The NGS mRNA library was prepared with Universal Plus mRNA-Seq 
kit according to the manufacturer’s instructions (NuGen, Redwood City, 
CA), and 100 ng input material was used. Library construction consists of 
random fragmentation of the poly A mRNA, followed by cDNA produc-
tion using random polymers. The cDNA libraries were quantitated using 
Qubit and size distribution was checked on Bioanalyzer 2100 (Agilent 
Technologies, Palo Alto, CA). The library was sequenced on HiSeq 2500. 
Clusters were generated to yield approximately 725 K–825 K clusters/mm2. 
Cluster density and quality were determined during the run after the 
first base addition parameters were assessed. We performed single end 
sequencing runs to align the cDNA sequences to the reference genome. 
Generated FASTQ files were transferred to the AdHF Research Data 
Center where Avadis NGS 1.5 (Agilent, Palo Alto, CA and Strand 
Scientific, CA) was used to align the raw RNA-Seq FASTQ reads to 
the reference genome. Reference genome Human hg19 and transcript 
annotation (gtf file) from UCSC hg19 version 2014-06-02-13-47-56 
were used for data normalization.

PBMC transcriptome NanoString nCounter analysis
A second set of aliquoted RNA samples was used for NanoString 

comparison analysis. Each target gene of interest was detected using 
a pair of reporter and capture probes that together target a continuous 
100 nucleotide sequence. Hybridization between target mRNA and 
reporter-capture probe pairs was performed at 65°C for 20 h using 
CT1000 Touch Thermal Cycler (Bio-Rad, CA) according to manu-
facturer protocol. Post hybridization processing was carried out on a 
fully automated nCounter Prep station liquid-handling robot. Excess 

probes were removed and the probe/target complexes were aligned 
and immobilized in the nCounter cartridge, which was then placed in 
a digital analyzer for image acquisition and data processing (nCounter 
Digital Analyzer) as per the manufacturer’s protocol. The expression 
level of a gene was measured by counting the number of times the 
specific barcode for that gene was detected, and the barcode counts 
were then tabulated in a comma-separated value (CSV) format. The raw 
digital count of expression was exported from nSolver v3.0 software 
for downstream analysis.

CodeSet choice
We chose the NanoString PanCancer IO360 Gene Expression panel 

(File S1: IO360 gene list and signature descriptions) for two main ben-
efits: first, the IO360 panel has 30+ clinically relevant gene signatures 
(e.g., TIS signature for anti-PD1 treatment) and immune cell type 
groups (e.g., T-cell and B-cell signatures) built-in. These signatures 
can reveal biologically relevant information beyond the single gene 
level. Second, the IO360 panel was designed and structured similarly 
to a laboratory-developed test or in-vitro-Diagnostic Multivariate Index 
Assay. With a synthetic panel standard as the reference sample, IO360 
can generate single sample assay reports. The synthetic panel standard 
can also be used for lot-to-lot calibration.

Experimental design
Cartridge #1 and #2 (24 assays) were used to analyze 24 RNA sam-

ples at 100 ng input level (20 ng × 5 µl). Cartridge #3 (12 assays) was 
used to analyze 2 RNA samples at various dilutions (5–80 ng × 5 µl) of 
25–400 ng input level. To assess technical reproducibility, we replicated 
100 ng input level (20 ng × 5 µl) of sample #1 and #2 in cartridge #3. 
In order to check reproducibility across the cartridges, sample #2 (20 
ng × 5 µl) was loaded in cartridge #1 and #3. To compare RNA to WB 
gene expression, one additional cartridge (12 assays) was used to test 
experimental conditions for WB extracts (Table 2).

Statistical analysis
Prior to statistical analysis, NanoString and NGS expression values 

were log transformed. We computed Pearson correlation coefficients 
for each sample, comparing gene expression values between NGS and 
NanoString across the set of matched genes. Gene names (Entrez ID) 
were used to identify matches in the NGS and NanoString datasets. 
Next, we computed Person correlations for each of the matched genes 
across the set of samples. Sets of genes were grouped based upon av-
erage expression rank for NanoString across the dataset and the mean 
NanoString-NGS correlation for each set was computed. Similarly, genes 
were grouped by average NGS expression and the NanoString-NGS 
correlation for each group was computed.

RESULTS

Number of overlapping genes for comparison between 
NanoString and NGS data

Using NanoString panel IO360, out of 750 genes, 734 were matched 
to NGS genes.

Nanostring/NGS-intrasample correlation
We focused on the correlation between two platforms within one 
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sample. On average, the correlation was high within the individual 25 
samples. The average correlation was 0.904, the minimum correlation 
is 0.86 and the maximum correlation was 0.92 across the 25 samples 
used in this study. There was a high correlation of 734 genes in a single 
sample tested by both assays. The example of this correlation in sample 
1 (R2= 0.8165) is shown by the scatter plot (Fig. 1). It is important to 

note that the true cut-off is not labelled as zero in Figure 1 due to data 
transformation. The lower-bound for NGS is at a value of 1, which is 
an offset placed during transformation and represents genes that are 
zero in all the samples. The dynamic range of NGS (single digits to 
hundreds or more) differs from that of NanoString (20 counts to 20 k). 
However, units do not impact the results of correlation analysis.

Figure 1. Intrasample correlation of sample 1. X-axis = NanoString, Y-axis = NGS. Correlations were computed for sample 1 to compare gene ex-
pression values between NGS and NanoString across 734 overlapping genes.

Table 2. Experimental design of aliquotted PBMC samples. 

Lane Cartridge #1 Cartridge #2 Cartridge #3

1 Sample 2, 20 ng × 5 µl Sample 14, 20 ng x 5 µl Sample 1, 5 ng × 5 µl

2 Sample 3, 20 ng × 5 µl Sample 15, 20 ng x 5 µl Sample 1, 10 ng × 5 µl

3 Sample 4, 20 ng × 5 µl Sample 16, 20 ng x 5 µl Sample 1, 20 ng × 5 µl

4 Sample 5, 20 ng × 5 µl Sample 17, 20 ng x 5 µl Sample 1, 20 ng × 5 µl

5 Sample 6, 20 ng × 5 µl Sample 18, 20 ng x 5 µl Sample 1, 40 ng × 5 µl

6 Sample 7, 20 ng × 5 µl Sample 19, 20 ng x 5 µl Sample 1, 80 ng × 5 µl

7 Sample 8, 20 ng × 5 µl Sample 20, 20 ng x 5 µl Sample 2, 5 ng × 5 µl

8 Sample 9, 20 ng × 5 µl Sample 21, 20 ng x 5 µl Sample 2, 10 ng × 5 µl

9 Sample 10, 20 ng × 5 µl Sample 22, 20 ng x 5 µl Sample 2, 20 ng × 5 µl

10 Sample 11, 20 ng × 5 µl Sample 23, 20 ng × 5 µl Sample 2, 20 ng × 5 µl

11 Sample 12, 20 ng × 5 µl Sample 24, 20 ng × 5 µl Sample 2, 40 ng × 5 µl

12 Sample 13, 20 ng × 5 µl Sample 25, 20 ng × 5 µl Panel standard

Nanostring/NGS-intersample correlation
Grouping definition by gene expression levels: We ranked 734 genes 

based on average expression levels from low to high. Genes were put 
into three bins. By NanoString criteria, 128 genes showed low expres-
sion level (0–25 counts), 152 genes showed intermediate expression 
level (26–100 counts) and 454 genes showed high expression level (> 
100 counts). Table 3 summarizes mean expression levels and shows 
that counts and expression levels are proportional in both, NanoString 

and NGS platforms.
Nanostring/NGS gene-specific intersample correlation: We exam-

ined the gene-specific inter-sample correlation across both platforms. 
Individual sample plots of gene expression correlation between NGS 
and NanoString showed the same stratification by expression level. The 
average correlation was 0.56 across the 734 genes used in this study. 
The minimum correlation was −0.59 and the maximum correlation was 
0.999. Figure 2 plots the log of the NanoString average expression vs. 
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the correlation between NGS and NanoString. The NanoString results 
showed that the average correlation between platforms varies by expres-
sion level, from low (1–100 counts) R2 = 0.07 to high (> 500 counts) 

R2 = 0.75 (Fig. 2A). The average NGS correlation between platforms 
varied by log of expression level, from low (< 1 log counts) R2 = 0.21 
to high (> 3 log counts) R2 = 0.68 (Fig. 2B).

Figure 2. Expression-level dependent correlation for NanoString (A) and NGS (B) perspectives. Gene-specific intersample correlations were 
computed across NanoString and NGS. Dashed red lines visually separate high and low expressors.

Table 3. Mean gene expression levels in NanoString and NGS platforms. 

Number of counts Number of genes NanoString mean counts NGS mean TPM

0–25 128 16.9 1.25

26–100 152 51.1 7.87

> 100 454 2995.8 214.37

The average correlation between NGS and NanoString depended 
on expression, sorted into NGS and NanoString bins (Table 4 and 
Table 5). As common practice, the genes were binned in sets of 100 
sequentially, from lowest to highest expression. According to NGS log 
expression average (< 1, 1–2, 2–3, and > 3), one-third of genes in the 
low expression group showed low correlation between assays, whereas 
the two-thirds of genes in the intermediate and high-expression groups 
showed sufficient correlation (Table 4). According to the NanoString log 
expression average (0–3.1, 3.1–3.8, 3.8–4.8, 4.8–5.7, 5.7–6.4, 6.4–7.2, 
and > 7.2), the average correlation between NGS and NanoString also 
depended on expression (Table 5). The data from both platforms showed 
that low-expression genes did not yield a high correlation between both 
assays, whereas high-expression genes did.

Assess assay sensitivity, reproducibility and robust-
ness within the NanoString platform

In order to assess the feasibility of using NanoString for commercial 
assay development, we demonstrated the sensitivity, reproducibility, 
and robustness of this platform.

Technical replicates and reproducibility: Technical replicates had R2 
value > 0.98. Equal concentrations (5, 10 and 20 ng × 5 µl) of sample #1 
and #2 were used to test the reproducibility of technical replicates. The 
result showed that the binding density and raw counts increase with the 
amount of input. All three input levels gave acceptable readout, while 
100 ng input gave the most robust signal. The same concentration of 
100 ng input level (20 ng × 5 µl) of sample #1 and #2 in cartridge #3 
showed technical replicates with the same amount of input and perfect 
correlation (R2 > 0.99) for both pairs, thus demonstrating extremely 
high reproducibility (Fig. 3).

For sample #1 and #2 in cartridge #3 concentration of 200 ng input 
level (40 ng × 5 µl), the raw counts increased marginally compared to 
that of 100 ng input (data not shown). This suggested that given the 
RNA quantity of samples #1 and #2, 100 ng of input yielded the most 
precise result and generated robust signal for > 80% genes in the panel 
without risk of saturation. For this reason, we used 100 ng input for 
the remainder of this project. The platform was overloaded with 400 
ng input (80 ng × 5 µl) (data not shown). The binding density exceeds 
the limit (2.25) and fields of view dropped due to imaging failure. Raw 
counts also dropped due to overlapping probes and failure to resolve 
the barcode.

Sensitivity and limit of detection on the NanoString platform: The 
background noise level of the assay is around 20 raw counts. The limit 
of detection on the NanoString platform was set at 2 standard devia-
tions above the mean negative control probe counts. Probe counts ≤ 
50 were not quantifiable and represent the lower limit of detection. 
Probe counts between 50 and 100 were above the limit of detection but 
could be noisy. Probe counts > 100 were quantifiable and optimal for 
downstream analysis. Figure 4 displays a heat map of raw count data 
without normalization. 128 probes were below the limit of detection (< 
50 counts) and labeled as “flag/prune”. The absolute limit of detection 
of NanoString has been published [22]. The intention of this study was 
to demonstrate that NanoString was a sufficient platform for our sample 
type and assay requirements.

Robustness and dynamic range on the NanoString platform: To assess 
the robustness, we calculated gene signature scores and grouped gene 
signatures according to biological function (Fig. 5). The robustness of 
the results was consistent across different concentrations of RNA input, 
cartridges, and survival outcomes.
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Figure 3. NanoString reproducibility. Equal concentrations of sample #1 (A) and #2 (B) were used to test the reproducibility of technical replicates.

Figure 4. NanoString sensitivity and limit of detection. Raw data form IO360 panel without normalization were shown in a heat map. Probes below 
the limit of detection (< 50 counts) were labeled as “flag/prune”.

Figure 5. NanoString robustness and dynamic range. Gene signature scores were calculated and grouped according to biological function across 
different concentrations of RNA input, cartridges, and survival outcomes. C1, cartridge #1; C3, cartridge #3; R1, replicate of sample #1; R2, replicate of 
sample #2.
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Table 4. Average correlation in NGS platform. 

Log NGS expression average Average correlation Expression level

< 1 0.21 Low

1–2 0.58 Intermediate

2–3 0.63 High

> 3 0.68 High

Table 5. Average correlation in NanoString platform. 

Gene order (average expression 
among 734 genes)

Log nanostring expression 
average

Average correlation Expression level

1–100 0–3.1 0.07 Low

100–200 3.1–3.8 0.34 Low

200–300 3.8–4.8 0.59 Intermediate

300–400 4.8–5.7 0.64 High

400–500 5.7–6.4 0.67 High

500–600 6.4–7.2 0.75 High

Above 600 > 7.2 0.70 High

All data were normalized by geometric mean of the built-in house-
keeping genes. The heat map shows an unsupervised clustering of 
outcomes, with sample #1 representing one year survival status and 
sample #2 representing one year non-survival. The results were robust 
within the two groups at different RNA concentrations.

Considering the difficulty of performing a controlled degradation, 
we simulated degradation by diluting high-quality RNA input to reduce 
the RNA detectability and the effective target number. Cartridge #3 
represented samples from the same RNA prep tubes (sample #1 and 
sample #2), but loaded at different input amounts (25 ng to 400 ng total 
RNA). All samples of varying dilution levels produced similar gene 
signature scores, suggesting a large dynamic range and robustness of 
the NanoString platform.

To show the inter-cartridge robustness, we placed an identical con-
centration of sample #2 (100 ng) in cartridge #1 and cartridge #3, which 
showed excellent technical replication.

DISCUSSION

In this paper, we compared the performance of NGS and NanoString 
in PBMC transcriptome profiling, using NGS RNA whole transcriptome 
sequencing to compare the 770 genes represented on NanoString’s 
PanCancer IO 360 Gene Expression panel. Our study showed good 
correlation between NGS and NanoString data. Out of 750 genes from 
the NanoString panel IO360, 734 overlapped between both platforms and 
showed high intrasample correlation. Within an individual sample, there 
was an expression-level dependent correlation between both platforms. 
Binning the genes into low, intermediate and high expression levels, 
the two platforms showed variable correlation, with worse correlation 
in genes with low expression levels and high correlation in genes with 
high expression levels. The intermediate and high-expression groups 

showed NGS average correlation from 0.58–0.68 and NanoString average 
correlation from 0.59–0.70. The low expression groups showed NGS 
average correlation of 0.21 and NanoString average correlation from 
0.07–0.34. For these reasons, we will use only the intermediate- and 
high-expression groups (approximately 50%–60% of total expression 
groups) as targets for commercialization.

Consistent with published studies [19,23], we demonstrated that 
the reproducibility, sensitivity, and robustness of NanoString makes 
it a suitable platform for commercial assay development. Technical 
replicates with equal concentration input levels within one cartridge 
demonstrated extremely high reproducibility. The RNA input of 100 
ng yielded the most precise result, generated robust signal for > 80% 
genes in the panel without risk of saturation and therefore was used to 
analyze the remaining 23 samples. In future studies, we plan to use 100 
ng input to build our commercial assay. We may increase input to 200 
ng for samples with partially degraded RNA. Notably, the calculated 
gene signature scores were highly consistent across a wide range of 
concentrations of RNA input, consumables and samples with different 
clinical outcomes.

Our contemporary biomarker test development holds several ben-
efits over older techniques. For example, the first clinically approved 
molecular expression test, AlloMap, which was initiated in 2001, used 
microarray and RT-PCR for gene discovery, validation, and commer-
cialization [20]. At that time, the best-available discovery platform was 
based on hybridization and was only able to measure the expression of 
7300 genes. The transition to a commercial platform using RT-qPCR 
yielded roughly 25%–30% of genes with similar expression. Our current 
study utilized expression-level dependent correlation, which suggests 
that both NGS and NanoString platforms yield results that are more 
precise, robust, and reproducible for gene discovery and commercializa-
tion. As a projection for a commercial transcriptome test development, 
our study demonstrated an excellent cross talk between gene discovery 
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and commercial platforms.
This paper only compares purified mRNA, not whole blood. We will 

perform the platform comparison in a separate project using whole blood.
The expression of very highly expressed groups cannot be quantified 

above 500 raw probe annotation counts by using NanoString.
As the research has demonstrated, NGS and NanoString have com-

plementary roles. NGS for discovery, NanoString for commercialization. 
These two platforms “talk to each other”.
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