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ABSTRACT

Adipose tissue-derived stem cells (ADSCs) are a somatic stem cell population contained in fat tissue that may be utilized 
in the treatment of urologic disease. ADSCs are excellent candidates for these therapies as they are easily obtained 
in large quantities from adipose tissue, and possess the potential to undergo long-term proliferation, self-renewal and 
multipotent differentiation. We reviewed the available evidence from 1964 through 2014 concerning ADSC availability, 
differentiation, and potentiality in the context of treatment for urologic diseases.
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Adipose tissue-derived stem cells (ADSCs) [1] are a somatic stem 
cell population contained in fat tissue and have been shown to possess 
stem cell properties such as trans-differentiation and self-renewal [2,3]. 
Similar to other types of mesenchymal stem cells (MSCs), ADSCs 
express multiple CD marker antigens (CD73+CD90+CD105+ CD34+/- 
CD11b- CD104b- CD19- CD31- CD45- SMA- [4-7]). Additionally, 
utilizing ADSCs, instead of other stem cell populations, is advantageous 
in that large quantities of stem cells are easily isolated using minimally 
invasive surgical procedures. 

Characterization of ADSCs 
By employing flow cytometry [8], histology [9] and other methods 

[10,11], several candidate cellular markers and genes for ADSCs have 
been screened. Yamamoto et al [12] used immunofluorescence (IF) stain-
ing of mouse adipose tissue to identify cells expressing CD90, CD105, 
Sca-1, and/or p75NTR. The results showed widespread distribution of 
each of these markers, suggesting that they are not specific for ADSCs. 
In another recent study by Zannettino et al [13], the authors attempted 
to identify ADSCs in human adipose tissue by employing IF staining 
for cellular markers 1A6.12, 1B5, STRO-1, CD146, and 3G5. While 
these markers were detected in two large blood vessels of unknown 
identity, their location in adipose tissue cannot be inferred due to the 
lack of adipocytes or any other markers in the neighborhood of these 
two blood vessels. Several lines of evidence suggest that ADSCs are 
vascular precursor cells. Many studies have shown that stromal vascular 
fraction (SVF) contains progenitor cells that are able to differentiate 
into endothelial cells and participate in blood vessel formation. Addi-
tionally, a recent study demonstrated that SVF cells expressing both 
pericyte and mesenchymal markers reside in a periendothelial location 
and stabilize endothelial networks [14]. Another study showed that 
ADSCs transplanted into an ischemic cortex preferentially migrate 
toward microvessels where they differentiate into vascular smooth 

muscle cells [15]. Extensive histologic and flow cytometry assays, 
found that smooth muscle actin (SMA) and CD31 were localized within 
smooth muscle and endothelial cells, respectively, in all blood vessels 
examined. CD34 localized to both the intima (endothelium) and adven-
titia, neither of which expressed SMA. The niche marker Wnt5a was 
confined exclusively to the vascular wall, within mural smooth muscle 
cells. Surprisingly, the widely accepted mesenchymal stem cell marker 
STRO-1 was expressed exclusively in the endothelium of capillaries 
and arterioles but not in the endothelium of arteries. The embryonic 
stem cell marker SSEA1 localized to a pericytic location in capillaries 
and in certain smooth muscle cells of arterioles. Cells expressing the 
embryonic stem cell markers telomerase and OCT4 were rare and ob-
served only in capillaries. Tang et al also identified the progenitor cells 
in white adipose tissue within the adipose vasculature [11]. Notably, 
Rodeheffer et al. reported a similar result by employing a variety of 
approaches [10]. Based on these findings and evidence gathered from 
the existing literature, it has been proposed that ADSCs are vascular 
precursor (stem) cells at various stages of differentiation [9]. 

Isolation, differentiation and application of ADSCs 
In recent years, the potential for ADSCs as a new source of adult 

stem cells has been extensively explored [16-18]. ADSCs can be de-
veloped with a series of steps including isolation, sorting, culture and 
differentiation. Isolation of ADSCs begins by digesting adipose tissue 
with collagenase type IA. After being filtered by a cell strainer, the re-
sulting cells are sorted by specific stem cell markers in a cytometer [1]. 
The sorted cells are then cultured in regular culture medium and can be 
induced into different cell types using an appropriate induction medium. 
In most animal experiments, ADSCs were isolated from autologous 
adipose tissue, allogeneic adipose tissue, or even heterogeneous tissue. 
ADSCs display multipotency by retaining the ability to differentiate into 
cell types of different lineages including neural tissue, smooth muscle 
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and endothelium. This multipotency is advantageous in the treatment 
of urologic diseases as all of these cell line components are important 
constituents of the urinary system [19].

Various routes for delivery of ADSCs, ADSC-induced cells, or 
ADSCs combined with compound materials have been developed for 
the treatment of different diseases or damaged tissue. These routes can 
be classified into two categories: systemic delivery through blood ves-
sels (intravenous injection or intra-arterial injection) or local delivery 
directly into injured tissues or organs [20]. Although systemic injection 
of ADSCs has proven to be effective in some disease models, it may 
induce serious side effects such as respiratory distress, air embolism, 
or hemodynamic compromise that hinder its adoption as a regular route 
for ADSCs delivery [21]. 

ADSCs could be incorporated into damaged tissues or organs which 
could give rise to new functional components and also exert potent 
anti-inflammatory, anti-fibrotic, or immunomodulation effects through 
paracrine or autocrine routes (via vascular endothelial growth factor, 
granulocyte/macrophage colony stimulating factor, stromal-derived 
factor-1alpha and hepatocyte growth factor) [22,23]. Interestingly, it 
is proposed that even apoptotic or dying ADSCs exhibit distinctive 
immunosuppressive properties [24]. ADSCs have been shown to possess 
stronger anti-inflammatory and immuno-modulating functions than 
bone marrow derived MSCs [25].

The applications of ADSCs in urological disease are summarized 
in Table 1.

Application of ADSCs for kidney disease
The beneficial effects from ADSCs or MSCs have been intensively 

investigated for treating chronic kidney disease (CKD) or acute renal 
injury (AKI) [26-30]. As kidney diseases, especially CKD, usually affect 
multiple systems, there is a concern that autologous ADSCs may be 
affected by renal disease. However, results from Roemeling-van Rhijn 
et al. [31] have illustrated that ADSCs from patients with renal disease 
possessed similar characteristics and functionality as those from a healthy 
control group making ADSCs a feasible stem cell choice in kidney dis-
ease therapy. Many kidney diseases are associated with inflammation, 
altered immune response, and impaired renal units which might be 
ameliorated by ADSCs. Although the precise mechanisms underlying 
ADSCs’ effect on kidney function remain unclear, it is hypothesized 
that ADSCs could be engrafted into glomerular or tubular structures, 
leading to the regeneration of tubular epithelium, and restoration of 
systemic or paracrine secretory function.

1. Acute renal injury (AKI) 
Yasuda et al. focused their study on AKI [32] and found that subcap-

sular injection of non-expanded SVF cells ameliorates renal function 
injury induced by cisplatin in a rat AKI model. Work by the same group 
also explored the beneficial paracrine/endocrine effects of ADSCs on 
an AKI model induced by folic acid in a nude rat [33]. They found that 
hepatocyte growth factor (HGF) secreted by ADSCs is one of the key 
mediators that involved in the protection of renal function. However, 
Kim et al showed that human ADSCs exert a paracrine-protective effect 
on cisplatin nephrotoxicity at multiple target sites [34] .

2. Ischemic reperfusion (IR)
Ischemic reperfusion (IR) injury and transplantation tolerance are 

relevant issues associated with kidney transplants. In 2013, Vanikar 
et al. reported a clinical trial of a kidney transplant in a 29 year old 

male with end stage renal disease [35]. Pre-transplant co-infusion of 
donor ADSCs and hematopoietic stem cells in the kidney helped in 
achieving tolerance based on the results of the three year follow-up. 
In 2014, Iwai et al. also conducted an experiment to assess the impact 
of ex vivo administration of ADSCs on the function of kidney grafts 
[36]. Local administration of ADSCs to the target organ bypasses the 
side effects of intravenous injection of stem cells, and this can easily 
be implemented during the kidney transplant operation. Impressively, 
survival rate and renal function improved after local administration of 
ADSCs. In fact, even intrarenal arterial or intravenous administration 
of ADSCs exhibited anti-oxidant, anti-inflammatory, or anti-apoptotic 
properties in IR induced acute kidney injury in rat models [37-39]. In 
in vitro studies, Huang et al found that co-culture of ADSCs with renal 
epithelial cells enhanced the physiological function of the latter [40].

3. Chronic kidney disease (CKD)
Villanueva et al. explored the effect of ADSCs on CKD by a single 

intravenous infusion of ADSCs on a nephrectomy induced CKD mod-
el of rats [41]. ADSC treatment was associated with reduced plasma 
creatinine, higher levels of epitheliogenic and angiogenic proteins, 
and improved renal function. Work by Hyun et al. [42] illustrated the 
beneficial effects of ADSCs on improving renal function on a IgAN 
mouse model. These effects may occur between balancing of Th1 and 
Th2 cytokines that are modified by ADSCs. However not all work has 
demonstrated positive results. Quimby et al. investigated the safety and 
efficacy of intravenous infusion of allogeneic ADSCs for treatment of 
CKD in an elderly cat model [43] and found that both cryopreserved 
ADSCs and ADSCs cultured from cryopreserved adipose tissue were 
associated with little improvement in renal function parameters. Higher 
intravenous doses (4×106 cells/time, 3 times) of cryopreserved ADSCs 
were associated with a high incidence of side effects. This study illustrated 
that there might be different therapeutic properties between ADSCs and 
bone marrow derived stem cells. The use of allogeneic ADSCs might be 
one of the reasons for the poor outcome, since allogeneic cells survive 
a shorter time in the body compared to autologous ADSCs. 

4. Diabetic nephropathy (DN) and others
Zhang et al. [44] found that repeated systemic administration of 

ADSCs attenuated proteinuria, glomerulus hypertrophy, and tubular 
interstitial injury in a DN rat model. Ebrahimi et al. [45] and Zhu et 
al. [46] focused on atherosclerotic renal artery stenosis (ARAS). With 
their swine models of renal injury, they found that ADSCs improved 
medullary inflammation, fibrosis, endoplasmic reticulum stress, and 
apoptosis during revascularization. These results combined with other 
similar reports [47] support the development of ADSC-based approaches 
for management of renovascular disease.

Effects of apoptotic ADSCs were also evaluated in sepsis-induced 
kidney injury model. Work by Chen et al. [48], Chang et al. [49], and 
Sung et al. [50] revealed that apoptotic ADSCs therapy led to better 
protection of renal function during sepsis induced by cecal-ligation 
and puncture (CLP). Cellular factors released from apoptotic ADSCs 
are thought to be responsible for their biological effect in this context. 

Application of ADSCs for bladder disease

1. Bladder regeneration
Bladder wall regeneration is an unmet clinical need after subtotal 

cystectomy, and ADSCs have shown promising translational value in 
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the regeneration of bladder tissue. In in vitro tests, the ability of ADSCs 
to differentiate into cell types pertinent to the field of urology (such as 
urothelium and smooth muscle cells) was evaluated in several studies 
[51-53]. These differentiated cells exhibited relevant cell biomarkers 
(such as cytokeratin 18 and uroplakin II for urothelium and smooth 
muscle actin, myosin, and calponin for smooth muscle cells) [54,55], 
and maintained their viability when implanted in vivo [56,57]. In in 
vivo experiments, ADSCs or differentiated ADSCs (pre-cultured with 
ascorbic acid to enhance collagen deposition) were used to seed artifi-
cial materials or biocompatible scaffolds including tissue engineered 
prepuce scaffolds (TEPS) [58], polyglycolic acid (PGA) [54,59], or 
bladder acellular grafts (BAMG) [57]. Histological studies of these 
implanted materials and functional studies of the regenerated bladder 
found beneficial effects of ADSCs including in- vivo differentiation and 
immunomodulation abilities. ADSCs differentiated into epithelial and 
smooth muscle cells, which are normal components of the bladder wall, 
in these animal models. Inflammation and fibrosis appeared milder in the 
ADSCs seeded group, possibly resulting from the immunomodulation 
ability of ADSCs. ADSCs can also promote vascularization of the grafts 
[60]. The approaches conducted above led to higher incorporation of 
ADSCs into host tissues and resulted in better functional recovery.

2. Bladder voiding dysfunction (BVD)
Using a bladder outlet obstruction (BOO) induced BVD rat model, 

Tremp et al. proved that ADSC administration by injection into the 
bladder wall prevented pathophysiological remodeling caused by BOO 
[61]. This was also associated with regenerated bladder tissue and 
function recovery represented by improved voiding pressure, voiding 
volumes, increased smooth muscle ratio, and up-regulation of important 
contractile proteins. Local administration of ADSCs into the bladder 
wall was also associated with BOO induced detrusor overactivity 
(DO) according to the data of Song et al. [62]. ADSCs were able to 
mobilize primitive endogenous stem cells by up-regulating stem cell 
markers and genes responsible for stem cell trafficking (e.g., SDF-1/
CXCR4, HGF/cMet, PDGF/PDGFR, and VEGF/VEGFR signaling 
pathways). ADSCs also ameliorated hyperlipidemia associated detrusor 
overactivity and diabetic bladder dysfunction (DBD) through bladder 
injections or intravenous injections in rat model systems according to 
our previous studies [63,64].

Application of ADSCs for urethral disease

1. Urethral regeneration
Tissue engineering of urethra using stem cells is another active area 

of translational research in urology. Both ADSCs and induced ADSCs 
along with biocompatible materials have shown to be an effective 
approach for in vivo building of urethral substitutes or repair material 
[65-67]. Engineered urethral tissue using ADSCs usually had better 
tissue maturation (differentiated ADSCs, collagenous fibers, extracel-
lular matrix) and function.

2. Stress urinary incontinence (SUI) 
ADSCs’ therapeutic effects on another common urethral disease, 

stress urinary incontinence (SUI), have also been extensively explored. 
The strategy for treating SUI using ADSC therapy, other than as a 
bulking agent, allows for the possibility of functional periurethral tissue 
regeneration, adequate mucosal coaptation, and restoration of resting 
urethral closure pressure [68]. Work by Gautam et al. showed that local 

injection of ADSCs helped reconstruct a functional urethral sphincter 
in a cryoinjured urethra in a SUI rabbit model [69]. Two weeks after 
implantation, leak point pressure (LPP) of the ADSC-treated animals 
was significantly higher than that of controls. Implanted ADSCs were 
supposed to differentiate into skeletal muscle, smooth muscle, nerve, 
and endothelial cells according to their immunohistochemical analyses. 
Watanabe et al [70] and Wu et al [71] conducted similar experiments 
in a pelvic nerve injury-induced SUI model. According to their data, 
animals with ADSC treatment also showed significant myogenic differ-
entiation or regeneration and improved LPP results. ADSCs combined 
with neuronal growth factor controlled release material might lead to 
better overall outcomes [72].

In 2010, we found that transplantation of ADSCs via urethral or 
intravenous injection was effective in the treatment or prevention of 
SUI in a vaginal balloon dilation model [73]. Activation of VEGF 
and ERK1/2 signaling pathway might be responsible for the paracrine 
effects of ADSCs in this model [74]. Fu et al. also explored the effect 
of myoblasts differentiated from ADSCs in a balloon dilation-induced 
SUI model. Local administration of these induced cells was also 
associated with improved bladder capacity and LPP [75]. Shi et al 
constructed a tissue engineering bulking agent with ADSCs and silk 
fibroin microspheres [76]. This bulking agent showed beneficial effects 
on an intrinsic sphincter deficiency model with long time efficacy on 
the recovery of the LPP and the lumen area. Finally, there are clinical 
trials using periurethral injection of ADSCs for the treatment of SUI in 
patients undergoing radical prostatectomy [77]. Preliminary data from 
these studies showed that local administration of ADSCs is a safe and 
feasible treatment modality for SUI.

Application of ADSCs for prostate disease
Takahara et al. assessed the effect of ADSCs on the proliferation of 

prostate cancer cells in vitro and in vivo [78]. They found that human 
ADSCs exerted an inhibitory effect on the proliferation of androgen 
responsive (LNCaP) and androgen nonresponsive (PC-3) cell lines. 
ADSCs activated both the TGF-β signaling pathway and caspase 3/7 
signaling pathway, in addition to inducing apoptosis of both cell lines 
in vitro. During in vivo testing, local administration of ADSCs also 
delayed the growth of tumors derived from both LNCaP and PC-3 
xenografts in immunodeficient mice.

In 2010, we tested the interaction of ADSCs and prostate cancer 
cells in vitro by transplanting PC-3 into the subcutaneous space of 
the right flank of athymic mice. One week later, ADSCs or phosphate 
buffered saline control was transplanted similarly to the left flank. Our 
results showed that the average size of PC-3 tumors in ADSC-treated 
mice were larger than in PBS-treated mice, and ADSCs were identified 
inside the tumors of ADSC-treated mice. A migration assay indicated the 
involvement of the CXCL12/CXCR4 axis in the migration of ADSCs 
toward PC-3 cells. Capillary density was twice as high in the tumors 
of ADSC-treated mice than in the tumors of PBS-treated mice. VEGF 
expression was similar but FGF2 expression was significantly higher 
in tumors of ADSC-treated mice than in the tumors of PBS-tread mice 
[79]. ADSCs helped tumor growth by increasing tumor vascularity, 
which was mediated by FGF2. This data cautions the use of ADSCs 
in cancer treatment and suggests the need for further safety study of 
ADSCs. In addition, it is difficult to predict the interaction between 
ADSCs and cancer cells in vivo, and ADSCs per se carry the risk of 
forming tumors when injected into the human body.
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Application of ADSCs for penile disease
ADSCs are utilized more commonly in erectile dysfunction (ED) 

and Peyronie’s disease (PD) related research [80,81].

1. Peyronie’s disease (PD) 
Tunica albuginea reconstruction and plaque control are important 

topics during the treatment of PD. Intratunical injection of ADSCs 
during the acute phase in a PD rat model helped prevent fibrosis and 
elastosis and maintain erectile function [82]. Gokce et al. showed that 
intratunical injection of ADSCs resulted in improved erectile function 
both as a prevention and treatment method in a rat model of PD [83]. 

Down-regulation of tissue inhibitors of metalloproteinase (TIMPs) 
and stimulation of matrix metalloproteinases (MMPs) might be the 
responsible mechanisms. Current therapeutics for tunica albuginea 
reconstruction using ADSCs includes the use of grafts (fascia lata, 
saphenous vein, porcine small intestinal submucosa, endothelialized 
self-assembled grafts) and ADSCs seeding [84,85]. The use of ADSCs 
was associated with less immunologic reaction and better maintenance 
of erectile function. Moreover, injected ADSCs could also be a source 
of endothelial and smooth muscle cells for tissue repair during PD 
progression [86].

Table 1. Applications of ADSCs in urological disease

Organ Cell Animal model Functional change Histological and molecular changes References

Kidney SVF, ADSC 
(rat, human, 
feline, swine)

Cisplatin/Folic acid induced AKI on rats, 
kidney transplant model, ischemia-reper-
fusion-induced acute kidney injury mod-
el, CKD model, IgA nephropathy model, 
STZ induced diabetic nephropathy mod-
el, Atherosclerotic renal artery stenosis 
model, sepsis induced kidney injury 
models

Improved survival rate, 
Improved renal function, 
increased blood flow, re-
duced serum creatinine 
and BUN, improved GFR, 
Reduction in proteinuria

Attenuated tubular damage, reduced 
apoptosis, inflammation, oxidative 
stress, improved revascularization, mod-
ulation of immune system

[32-50]

Bladder ADSC Bladder wall injury model, BOO, hyper-
lipidemia, diabetes induced bladder dys-
function model

Bladder wall with normal 
function, improved void-
ing pressure, voiding vol-
umes

Differentiation and immunomodulation 
abilities of ADSC, promoted vascular-
ization, increased smooth muscle ratio, 
unleashing/mobilizing primitive endoge-
nous stem cells

[54-64]

Urethra ADSC Urethral injury model, SUI model, intrin-
sic sphincter deficiency model

Urethra substitute, resting 
urethral closure pressure 
restoration, improved LPP 
or bladder capacity

Differentiation and immunomodulation 
abilities of ADSC, Activation of VEGF 
and ERK1/2 signaling pathway

[65-77]

Prostate ADSC Prostate cancer model Inhibitory effect on can-
cer cell, increasing tumor 
vascularity

Activation of TGF-β signaling pathway 
and caspase 3/7 signaling pathway, ac-
tivation of CXCL12/CXCR4 axis, upreg-
ulation of FGF-2

[78-79]

Penis SVF, ADSC Peyronie’s disease model, ED model 
(cavernous nerve injury, diabetes, radi-
ation, hyperlipidemia)

Improved erectile func-
tion, tunica albuginea re-
construction

Down-regulation of tissue inhibitors of 
metalloproteinase (TIMPs), stimulation 
of matrix metalloproteinases (MMPs), 
Differentiation and immunomodulation 
abilities of ADSC, endothelial regener-
ation, Secretion of angiogenic factors, 
up-regulation of nNOS positive nerves 
and smooth muscle content, activation of 
FGF-2, CXC ligand 5 secretion, upregu-
lation of SDF-1 and adrenomedullin

[80-105]

2. Erectile dysfunction (ED) 
ADSCs related treatment for ED aims to replenish the damaged 

penile tissue and prevent further apoptosis and fibrosis, which is dif-
ferent from the previous “symptom alleviating” medical interventions. 
Song et al investigated the effect of intracavernous delivery of SVF on 
erectile function in a mouse model of cavernous nerve injury (CNI) 
[87] and found that SVF induced endothelial regeneration and restored 
erectile function. An important mechanism appeared to be secretion 
of angiogenic factors from SVF. Similar tests conducted by Das et al. 
[88] and Ryu et al. [89] in models of diabetic ED additionally found 
improved erectile function and recovery of pathological changes in 
SVF treated groups. Our previous work also illustrated the beneficial 
effect of immediate and delayed intracavernous injection of uncultured 
autologous SVF, penile injection of ADSCs or ADSC derived lysate in 

CNI model [90,91]. We also proved the beneficial effect of ADSCs on 
radiation induced ED model, hyperlipidemia induced ED model, and 
type 2 diabetes induced ED model [92-94]. Ying et al. also investigated 
the effect of ADSCs and ADSCs combined with autologous vein graft 
in the CNI model and found improved erectile function, up-regulation 
of nNOS positive nerves and smooth muscle content [95,96]. Liu et al. 
utilized ADSCs with a modified VEGF gene in the diabetic ED model 
and found that modified ADSCs seemed to enhance VEGF-stimulated 
endothelial function and stimulate the proliferation of smooth muscle 
cells [97]. One limitation is the lack of comparison between the effect 
of ADSCs and modified ADSCs or ADSCs combined with other ap-
proaches for the above two studies. There are also many reports about 
combined treatments that involved the administration of ADSCs for 
erectile dysfunction [98-101].
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We have performed a number of experiments to determine the precise 
mechanism involved in ADSCs’ effects, In 2009, our team focused on the 
fibroblast growth factor 2 (FGF2) related signaling pathway [102]. We 
found that ADSCs could differentiate into endothelial cells in the penis 
and FGF2 signaling mediated this differentiation. In 2011, we found 
that CXC ligand 5 (CXCL5) was secreted by ADSCs at a high level 
[103]. CXCL5 promoted MPG neurite growth and activated JAK/STAT 
in Schwann cells. CXCL5 may also contribute to ADSCs’ therapeutic 
efficacy in ED animal models. Finally, in 2012 we additionally found 
that cavernous injury up-regulated SDF-1 expression in MPG which 
attracted injected ADSCs leading to the recovery of injured neurons 
[104]. Nishimatsu et al. also explored the mechanism involved in ADSCs 
induced restoration of erectile function and found that adrenomedullin 
(AM) played a major role in the restoration process [105]. 

PERSPECTIVES 

ADSCs are regarded as a candidate for the treatment of urological 
diseases due to several advantages they offer: they can be easily ob-
tained in large quantities under local anesthesia, possess the ability to 
undergo long-term proliferation, self-renewal and multipotent differen-
tiation and serve as a vehicle for the release of neurotrophins to repair 
tissues damaged by disease or injury. ADSCs possess better efficacy 
in healing acute injuries probably because of their enhanced ability at 
migration and mobilization, in addition to the mechanisms related to 
these processes. For in vivo use, pre-differentiated ADSCs may be a 
better choice than primary ADSCs. Future directions for research in 
this field include activation and mobilization of endogenous ADSCs 
in chronic pathologies. 
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