
www.jbmethods.org� 1

ArticleJournal of Biological Methods | 2017 | Vol. 4(1) | e68
DOI: 10.14440/jbm.2017.153

POL Scientific

Using cluster edge counting to aggregate iterations
of centroid-linkage clustering results and avoid large
distance matrices
Matthew Kellom*, Jason Raymond

School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-6004 USA

*Corresponding author: Matthew Kellom, Email: matthewkellom@gmail.com

Competing interests: The authors have declared that no competing interests exist.

Abbreviations used: GB: gigabyte; KS, Kolmogorov-Smirnov; RAM, random-access memory

Received August 19, 2016; Revision received January 20, 2017; Accepted January 22, 2017; Published March 16, 2017

ABSTRACT

Sequence clustering is a fundamental tool of molecular biology that is being challenged by increasing dataset sizes
from high-throughput sequencing. The agglomerative algorithms that have been relied upon for their accuracy require
the construction of computationally costly distance matrices which can overwhelm basic research personal computers.
Alternative algorithms exist, such as centroid-linkage, to circumvent large memory requirements but their results are
often input-order dependent. We present a method for bootstrapping the results of many centroid-linkage clustering
iterations into an aggregate set of clusters, increasing cluster accuracy without a distance matrix. This method ranks
cluster edges by conservation across iterations and reconstructs aggregate clusters from the resulting ranked edge list,
pruning out low-frequency cluster edges that may have been a result of a specific sequence input order. Aggregating
centroid-linkage clustering iterations can help researchers using basic research personal computers acquire more reliable
clustering results without increasing memory resources.

Keywords: clustering, cluster, centroid-linkage, distance matrix, aggregate

INTRODUCTION

Agglomerative clustering is a useful tool to bin sequencing datasets
based on sequence similarity, but the increasing use of high-through-
put sequencing technology is creating datasets large enough to make
clustering impractical for some computers and/or clustering methods.
The most basic and widely used sequence clustering techniques are
agglomerative, creating hierarchical bins via joining algorithms such as
minimum-, maximum-, and average-linkage, with average-linkage being
the most popular due to its perceived accuracy [1-4]. One drawback to
these methods is that they require the construction of exhaustive distance
matrices containing relative difference information between all possible
pairwise sequence comparisons. After a distance matrix is constructed,
the average-linkage algorithm bins sequences into clusters if the mean
distance between all cluster member sequences is at or above the chosen
clustering cutoff level, with minimum- and maximum-linkage using
alternative binning requirements.

Distance matrix construction is a key computational bottleneck in
agglomerative clustering. For large datasets, the computational needs of

their distance matrices can exceed computer memory limits, especially
for researchers using standard personal computers. Centroid-linkage
clustering circumvents the need for a distance matrix at the cost of being
input-order dependent, but this also makes the centroid-linkage algo-
rithm faster and more memory-efficient for large-scale datasets than its
agglomerative counterparts [5]. Since centroid-linkage clustering relies
only on single pairwise sequence comparisons read in input file order,
randomizing the order in which comparisons are made and centroids
assigned can affect cluster-sequence distribution. A graphical example
of how sequence input order can affect cluster-sequence distribution can
be found in Figure 1 of reference [6]. This means that depending on
the sequence input order, a specific cluster edge between two sequenc-
es may or may not form, affecting sequence-cluster membership. To
address this challenge, some have considered ordering input sequences
by length or abundance, with some programs employing these tech-
niques natively, like CD-HIT [7]. Sorting sequences by length ensures
that cluster centroids contain maximum information and thus cluster
members can be binned more accurately. Conversely, abundance sorting
approaches accuracy with the assumption that abundant sequences are

How to cite this article: Kellom M, Raymond J. Using cluster edge counting to aggregate iterations of centroid-linkage clustering results and
avoid large distance matrices. J Biol Methods 2017;4(1):e68. DOI: 10.14440/jbm.2017.153

2� J Biol Methods | 2017 | Vol. 4(1) | e68
POL Scientific

Article

more likely to represent functionally relevant clusters. However, both
of these sorting methods still produce results that are dependent on

a single, and to some degree, arbitrary input order. This is discussed
further in the Discussion section.

Figure 1. Flowchart of aggregating algorithm. Two scenarios are represented in the flowchart: One of the sequences for the current edge has already
been assigned to a cluster from a previous edge according to the Tracking Hash (Blue); Neither sequence from the current edge has been assigned
to a cluster according to the Tracking Hash (Red). A third scenario where both sequences of an edge have already been assigned to a cluster is not
shown since that edge would be skipped in the algorithm. The processes in the flowchart have been numbered and described: (1) Using the Sequence
Numerical Identifier of the already clustered sequence of the paired edge, obtain the Cluster Numerical Identifier from the Tracking Hash. (2) Using the
Sequence Numerical Identifier of the non-clustered sequence of the paired edge, obtain its sequence header from the Inverse Index Hash and append
it to the sequence header list value for the Aggregate Cluster Hash key of the Cluster Numerical Identifier from step 1. (3) Append the non-clustered
Sequence Numerical Identifier and Cluster Numerical Identifier from step 1 to the Tracking Hash to finalize it as a clustered sequence. (4) Both Sequence
Numerical Identifiers of the non-clustered pair are used to obtain their sequence headers from the Inverse Index Hash and assign them to a new Cluster
Numerical Identifier key in the Aggregate Cluster Hash. (5) Both Sequence Numerical Identifiers are paired with their Cluster Numerical Identifier and
appended to the Tracking Hash.

Standard clustering concepts still apply to centroid-linkage, more
closely related sequences are more likely to form an edge and be assigned
to the same cluster. Over enough iterations of input randomization and
clustering, edges that represent closely matched sequences will appear
in the majority of iterations. By keeping track of all of the edges and
ordering them by most frequently formed throughout the iterations, we
can essentially form an ordered list of the most closely related cluster
edges. From this ordered list of cluster edges, we can piece back together
the clusters and make sure that sequences end up binned in clusters
where they have the most representative cluster edge. The purpose of
this protocol is to provide biology researchers without access to suffi-
ciently high-performance computing with a means to obtain sequence
clustering results that do not require the construction of large distance
matrices while also not being solely dependent on sequence input order.

This process of random input order centroid-linkage clustering over
multiple iterations, breaking down the resulting clusters into their indi-
vidual edges, counting those edges, and then reconstructing aggregate
clusters from a ranked edge list effectively bootstraps aggregate cluster
edges from input-order dependent clusters and increases the reliability
of centroid-linkage results.

This methodology is beneficial when the amount of available ran-
dom-access memory (RAM) cannot contain the distance matrix being
made, preventing agglomerative clustering processes from completing.
For example, using traditional agglomerative clustering algorithms and
a centroid-linkage algorithm in the program USEARCH (www.drive5.
com/usearch/) allows for different limits on the maximum number of
input sequences. Maximum-, minimum-, and average-linkage algorithms
were only able to process ~10000 sequences past the distance matrix

J Biol Methods | 2017 | Vol. 4(1) | e68� 3
POL Scientific

Article

step on our 120 GB RAM-containing computer, capacity beyond what
is typically thought of for a standard computer. By eliminating the need
for a distance matrix, the number of sequences that the centroid-linkage
algorithm is able to process is only limited by the size of the file that
can be read into memory (> 1000000 for our 120 GB RAM computer).
Importantly, these results do become input-order dependent. By avoiding
distance matrices and writing edge lists and edge counts to text files in
disk space (rather than storing in memory), the aggregation process is
slower than agglomerative clustering but it is also more likely to finish
before running out of necessary memory.

For comparison, the centroid-linkage algorithm was able to complete
clustering of 10000 sequences in four seconds on our computer, while
the minimum-, maximum-, and average-linkage algorithms each took
eighteen seconds and the aggregation process took an hour and twen-
ty-two minutes. As the number of sequences in a dataset increases, the
runtime of the aggregating algorithm increases drastically (detailed in
Results). The increased time is to be expected because not only is it
waiting for multiple iterations of centroid-linkage clustering to complete,
but it must also count and store all cluster edges. Although slower than
average-linkage algorithms that use distance matrices for accuracy,
this aggregation method is more likely to complete before running
out of memory space. Likewise, as datasets and iterations increase, so
does the amount of necessary disk storage. For our largest dataset of
one million sequences over 101 clustering iterations, approximately
170 GB of data was written in the form of small individual text files.
With this cost in speed and storage, aggregating multiple iterations of
the efficient centroid-linkage algorithm increases the confidence of
cluster-edge distribution for datasets that are too large to be clustered
with comprehensive distance calculations.

MATERIALS AND METHODS

The procedure outlined here includes the use of specific clustering
and scripting programs but similar programs should work just as well.
The choice of which programs is determined by user preference. The
important details are to use a program that performs centroid-based
clustering, or some other distance-matrix independent algorithm, and
use a scripting language to perform the following aggregation procedure
with the resulting clusters. The annotated Perl script used by the authors
is supplied as File S1. Kolmogorov-Smirnov (KS) comparisons between
different clustering methods and the aggregation process were performed
in R with ks.test of the R Stats Package (r-project.org).

Sequence indexing
Sequences are first given a numerical identifier (Sequence Numerical

Identifier hereafter) by indexing the sequence order of the original input,
avoiding potential downstream filename parsing errors. For the sake of
speed, this index is stored in RAM as a hash table (Index Hash hereafter)
with the sequence header as the key and the Sequence Numerical Iden-
tifier as the value (defined as hash{key} = value in Perl), but could be
created and accessed in disk storage if desired. Typically, the amount of
memory needed for this index is considerably smaller than what would
be needed for a clustering distance matrix. It is very important during
this indexing step for each of the input sequence headers to be unique
so that later sequence header recall from their corresponding numerical
identifiers can be done accurately. The sequences used to demonstrate

the anticipated results originate from an unpublished metatranscriptome
dataset with a mean sequence length of 98 bases and their origin is not
important for the explanation of this methodology. Any natural dataset
should yield similar clustering results to those seen in Figure 1.

Clustering
Over sufficient iterations (the authors here chose 101 iterations),

clustering is performed with the USEARCH (version 8.0.1517_i86l-
inux64) “-cluster_fast” command at a 0.95 clustering threshold and
clusters are written to separate files using the “-msaout” command
(Cluster Files hereafter) [5]. The authors here chose 101 iterations
(counting from 0 to 100) because the results were stable at this number.
In general, more iterations will lead to more stable results, and larger
datasets will need more iterations. Determining the appropriate num-
ber of iterations is specific to each individual case. The USEARCH
“-cluster_fast” command utilizes centroid-based clustering and avoids
creating computationally costly distance matrices at the cost of being
input-order dependent. To mitigate the effects of input-order dependence,
the sequence FASTA-formatted input file is first reordered randomly
prior to clustering and downstream edge counting for each iteration. The
Sequence Numerical Identifiers created in step 1 are not altered by the
randomization process. Depending on the dataset, a smaller number of
iterations may result in aggregate clusters that are dependent on those
randomized clustering input files.

Edge compiling
After clustering has completed for the chosen number of iterations,

Cluster Files are accessed to begin counting edges. Singleton clusters
containing only one sequence and no edges are ignored by the counting
process, and this minimum edge parameter can be increased to speed
up the compiling/counting process at the cost of comprehensiveness.
Singletons and low-edge-count clusters are not typically represented
in large aggregate clusters.

To avoid storing edge counts in RAM, which can quickly reach
capacity for large datasets in typical research personal computers,
edges are written to files in disk storage (Edge File hereafter) with the
numerically lesser Sequence Numerical Identifier as the filename of the
Edge File (Hub hereafter) and the higher Sequence Numerical Identifier
as a line in the Edge File (Node hereafter) so that a specific edge’s count
from the iterations can be obtained by counting the number of times a
Node Sequence Numerical Identifier is found in an Edge File, this is
important for the downstream edge counting.

Edge counting
For each compiled Edge File, the counts of specific Nodes for each

Hub are stored in new files with filenames that represent their count
(Count File hereafter). This counts the number of times a specific edge
appears by writing the Hub and Node on a single line, never exceeding
the number of chosen iterations.

Reconstruction
Aggregate clusters are reconstructed from the edges contained in

Count Files, starting with the highest Count File (edges that were found
the most in the iterations, typically equal to the number of iterations)
and working down toward the lowest Count File. For the reconstruction
algorithm, four hashes are created. First, the Index Hash created in step 1.
Second, the inverse of the Index Hash, so that Sequence Numerical

4� J Biol Methods | 2017 | Vol. 4(1) | e68
POL Scientific

Article

Identifiers are stored as keys and sequence headers as values (referred
to as Inverse Index Hash in the algorithm below). Third, an aggregate
cluster hash where keys are a numerical identifier assigned to clusters
(Cluster Numerical Identifier hereafter) and values are lists of the
sequence headers contained in each cluster (referred to as Aggregate
Cluster Hash in the algorithm below). Fourth, a hash that tracks which
Cluster Numerical Identifier (value) each hub and node are stored (key)
(Tracking Hash in the algorithm below). For each edge of Hub and Node
Sequence Numerical Identifiers, aggregate clusters are reconstructed
using the following algorithm and then written to an output file:

1.	 Skip to the next edge if both the Hub and Node have already
been assigned to clusters in the Tracking Hash.

2.	 If the Hub has already been assigned to a cluster in the
Tracking Hash (implying with step 1 that the Node has not
been assigned yet):
2.1.	Get the Cluster Numerical Identifier value that the Hub

Numerical Identifier key has been assigned to in the
Tracking Hash.

2.2.	Get the sequence header value for the Node Numerical
Identifier key from the Inverse Index Hash and append
it to the value for the Cluster Numerical Identifier (from
step 2.1 key in the Aggregate Cluster Hash.

2.3.	Append this Node Numerical Identifier key - Cluster
Numerical Identifier value pair to the Tracking Hash.

3.	 If the Node has already been assigned to a cluster in the

Tracking Hash (implying with step 1 that the Hub has not
been assigned yet):
3.1.	Get the Cluster Numerical Identifier value that the

Node Numerical Identifier key has been assigned to in
the Tracking Hash.

3.2.	Get the Sequence Header Value for the Hub Numerical
Identifier key from the Inverse Index Hash and append
it to the value for the Cluster Numerical Identifier (from
step 3.1 key in the Aggregate Cluster Hash.

3.3.	Append this Hub Numerical Identifier key - Cluster
Numerical Identifier value pair to the Tracking Hash.

4.	 If neither the Hub nor Node have been previously assigned
to a cluster in the Tracking Hash:
4.1.	Create an Aggregate Cluster Hash pair with a Cluster

Numerical Identifier as the key and the sequence head-
ers for the Hub and Node Numerical Identifiers from
the Inverse Index Hash as the value. Append the Hub
Numerical Identifier key - Cluster Numerical Identifier
value to the Tracking Hash.

4.2.	Append the Node Numerical Identifier key - Cluster
Numerical Identifier value to the Tracking Hash.

4.3.	Assign the next Cluster Numerical Identifier to be +1
greater than the current one (to create a new cluster).

This aggregating process is displayed as a flowchart in Figure 1.

Figure 2. Cluster distributions of the individual iterations of centroid-linkage clustering (blue data points) and the aggregate clusters (red data
points) for a dataset of one million sequences. Both axes are displayed in a logarithmic scale.

J Biol Methods | 2017 | Vol. 4(1) | e68� 5
POL Scientific

Article

Table 1. Comparison of the number of non-singleton clusters between
a single centroid-linkage iteration and the aggregate for datasets that
range from 5000 to 1000000 sequences.

Dataset size
(sequences)

Centroid
Iteration

Aggregate Kolmogorov-Smirnov
P value

5000 172 174 1

10000 423 424 1

50000 1155 1212 1

100000 2693 2899 1

500000 17456 20728 0.4174

1000000 37487 311326 0.2468

The fourth column is Kolmogorov-Smirnov D statistic comparisons between
centroid (single iteration) and aggregate cluster distributions for the six
dataset sizes, as well as the data plotted Figure 2. The 1000000 sequences
dataset had an estimated P value of 0.2468, the 500000 sequences dataset
had an estimated P value of 0.4174, and all others had an estimated P value
of 1, indicating for all datasets that the null hypothesis of the data having the
same distribution cannot be rejected. Kolmogorov-Smirnov comparisons were
performed in R with ks.test of the R Stats Package (r-project.org).

Table 2. Kolmogorov-Smirnov P value table for each pairwise comparison
between results of the methods plotted in Figure 3.

 Centroid Aggregate Min. Max. Avg.

Centroid 1

Aggregate 1 1

Minimum 1 1 1

Maximum 0.7833 0.7833 0.6284 1

Average 0.9103 0.9103 0.7833 1 1

Kolmogorov-Smirnov calculations include singleton clusters, which are
not plotted in Figure 3. No pairwise comparison estimated P value was
smaller than 0.6284 (Minimum-Maximum comparison) meaning that the
null hypothesis of the data having the same distribution cannot be rejected.
Kolmogorov-Smirnov comparisons were performed in R with ks.test of the
R Stats Package (r-project.org).

Figure 3. 10000 sequences dataset cluster distributions for the aggregated clusters of Figure 1, as well as single clustering runs of centroid-,
minimum-, maximum-, and average-linkage algorithms from USEARCH. The graph displays counts of all non-singleton clusters. The x-axis shows
the size of the clusters produced from the five different methods, i.e., the number of sequences in each cluster. The y-axis shows the number of clusters
that were produced of the sizes displayed on the x-axis.

RESULTS

Each individual iteration of centroid-linkage clustering with ran-
domized inputs should yield cluster distributions that are similar but not

identical. Depending on the sequence input order, some sequences will
not be clustered with the same matches for every iteration. Alternatively,
some sequences will be so closely matched to other sequences that they
will be grouped together in all or nearly all iterations. With enough

6� J Biol Methods | 2017 | Vol. 4(1) | e68
POL Scientific

Article

iterations, the most prominent and closely-matched edges will appear
more often than distant edges. Since these closely-matched sequences
are likely to have edges that appear often, they will be among the first
to be built into the aggregate clusters with the procedure outlined above.

Aggregating the results of many iterations of centroid-linkage clustering
builds clusters from high-consensus edges while cutting out low-consensus
edges. The edges are ranked from highest to lowest consensus which is
then followed in the aggregation process. This process generally results
in the aggregate maximum cluster size being smaller than some clusters
of the individual iterations, especially for larger sequence datasets, as
seen in Figure 2 for a dataset of one million sequences. The number of
clusters produced by the aggregation process and a single iteration of
centroid linkage clustering is shown in Table 1 for multiple dataset sizes,
which includes the data plotted in Figure 2. Sequences of low-consensus
edges that are trimmed out by the aggregating process are either binned
to clusters where they are part of a higher-consensus edge or they are
binned as a single-sequence cluster. However, the two cluster distributions
remain the same, as shown with Kolmogorov-Smirnov test in Table 1.
Total runtime (which includes the 101 iteration of clustering) for this
one millions sequence dataset was 120:36:56 (Hours:Minutes:Seconds).

For datasets of other sizes: 5000 sequences, 00:43:11; 10000 sequences,
01:21:46; 50000 sequences, 01:50:33; 100000 sequences, 03:58:32;
500000 sequences, 54:44:34.

The cluster distribution of the aggregate clusters follows the same
pattern seen in the individual iterations, suggesting that the aggregation
process does not drastically alter the cluster distributions of the cen-
troid-linkage iterations to the point of being unrepresentative, as seen
in Figure 3. In contrast, minimum-, maximum-, and average-linkage
clustering algorithms yield a cluster distribution that varies more sub-
stantially from the centroid-linkage algorithm in Figure 3. Table 2 shows
Kolmogorov-Smirnov D statistics for pairwise comparisons between
the cluster distributions shown in Figure 3. The table shows that the
centroid method distribution’s least distant comparison is with the
aggregate cluster distribution, with an estimated P value which does
not allow us to reject the null hypothesis of having the same cluster
distributions. This means that the aggregation process does reconstruct
centroid-linkage cluster distribution instead of creating its own distinct
cluster distribution. The data plotted in Figure 3 is also displayed in
tabular format in Table 3.

Figure 4. 10000 sequences dataset cluster distributions for the aggregated clusters of Figure 1, as well as single clustering runs of centroid-
and length sorted centroid-linkage algorithms from USEARCH. The graph displays counts of all non-singleton clusters. The x-axis shows the size of
the clusters produced from the five different methods, i.e., the number of sequences in each cluster. The y-axis shows the number of clusters that were
produced of the sizes displayed on the x-axis. All pairwise comparisons between results of the methods plotted in this figure had Kolmogorov-Smirnov
P value of 1, meaning that the null hypothesis of the data having the same distribution cannot be rejected.

As mentioned in the introduction, pre-sorting sequences by length
ensures that cluster centroids contain maximum information and thus
cluster members can be binned more accurately. Conversely, abundance
pre-sorting approaches accuracy with the assumption that abundant se-
quences are more likely to represent functionally relevant clusters. The
aggregation process that we introduce clusters sequences with their most
frequent edge counterpart from multiple iterations of random input-order

centroid clustering. Our approach to accuracy is focused on the edges,
using iterations of random input-order clustering to create a sorted, or
ranked, edge list. Qualitatively, this has the effect of creating accurate
clusters when presorting a sequence dataset by length/abundance is not
sufficient or not possible.

As a simple example, a mock dataset of ten 100-base sequences pop-
ulated via introducing one or zero random substitutions into a duplicate

J Biol Methods | 2017 | Vol. 4(1) | e68� 7
POL Scientific

Article

of the previous sequence was clustered using the aggregation process. In
this dataset, listed below in FASTA format, with substitutions as capital
letters, sequences mock0 and mock1 were identical, mock2 and mock3
were identical, and mock5 and mock6 were identical leading to a total of
seven unique sequences. Sorting this mock sequence dataset by length
or abundance does not yield a clear pre-sorted input. The aggregation
process clusters mock0 and mock1 together and mock2–mock9 in a
separate cluster. The edges between the sequences in these clusters oc-
curred in 101/101 iterations of random input-order centroid clustering.
Edges that connect the two clusters occurred in only 58/101 iterations,
making them less of a priority in the aggregation algorithm. Length or
abundance pre-sorting this mock dataset could yield either the single or
double cluster distribution from the individual iterations depending on
which sequence is chosen as the centroid sequence. Pre-sorting datasets
with similar properties would yield clustering results that are close to
a single random input-order iteration. Listed below are the mock DNA
sequences described in the paragraph above.

>mock0
gaacaatgcattgtcattgctacaccgtttacatattacagagctttgcgcataagttcaacag-

caccctggtcagctagagcacgatagcgcagcccct
>mock1
gaacaatgcattgtcattgctacaccgtttacatattacagagctttgcgcataagttcaacag-

caccctggtcagctagagcacgatagcgcagcccct
>mock2
gaacaatgcattgtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacag-

caccctggtcagctagagcacgatagcgcagcccct
>mock3
gaacaatgcattgtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacag-

caccctggtcagctagagcacgatagcgcagcccct
>mock4
gaacaatgcattAtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacag-

caccctggtcagctagagcacgatagcgcagcccct
>mock5
gaacaatgcattAtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacag-

caccctggtGagctagagcacgatagcgcagcccct
>mock6
gaacaatgcattAtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacag-

caccctggtGagctagagcacgatagcgcagcccct
>mock7
gaacaatgcattAtcatAgctacaccgtttacatattacagagcCttgcgcataagttcaa-

cagcaccctggtGagctagagcacgatagcgcagcccct
>mock8
gaacaatgcattAtcatAgctacacAgtttacatattacagagcCttgcgcataagttcaa-

cagcaccctggtGagctagagcacgatagcgcagcccct
>mock9
gaacaatgcattAtcatAgctTcacAgtttacatattacagagcCttgcgcataagttcaa-

cagcaccctggtGagctagagcacgatagcgcagcccct

DISCUSSION

Since this aggregation process sacrifices speed to use less memory
than agglomerative clustering while improving centroid-linkage clus-
tering, the method can be much slower for large datasets. In addition,
since data is written to disk storage instead of RAM, large datasets can
require a large amount of available disk space, as mentioned in the final

paragraph of the Introduction section. While the lengthier completion
time and large amount of required disk space are drawbacks to this
method, the aggregation process will eventually finish if these conditions
are acceptable to the user.

Alternative methods for improving centroid-clustering results include
presorting the input sequences either by length, unique sequence abun-
dance, or combination of the two [5,8]. Figure 4 shows a comparison
of the cluster distribution for the aggregated clusters, randomly sorted
centroid-linkage, and length sorted centroid-linkage (sorted with the
sort option in USEARCH). Figure 4 and Table 4 (which shows the
data in tabular format) show the cluster distribution from the aggre-
gation process is closer to the distribution of the randomly sorted
centroid-linkage than the length sorted, although not significantly so.
However, both of these sorting methods (length and abundance) still
produce results that are dependent on a single, and to some degree,
arbitrary input order, while the aggregating process attempts to find the
average result of many possible input orders. A possible middle ground
would be to incorporate the results from presorted clustering to weight
the aggregation inputs with as many iterations of presorted cluster dis-
tributions as desired. For example, if a user wanted to make sure that
length sorted centroid-linkage was represented in the final aggregated
cluster distribution, they could include length sorted results in place
of one or more of the randomly sorted iterations. Unfortunately, just
as between length and abundance sorted methods, it is difficult to say
which method is definitively ‘better’ for most datasets.

Table 3. Tabular format of the data plotted in Figure 3.

Cluster size Agg. Centroid Min. Max. Avg.

1 8606 8608 8997 9167 9135

2 258 258 183 226 220

3 79 77 33 39 41

4 37 38 17 25 25

5 20 20 11 9 10

6 1 1 3 4 4

7 4 4 3 4 2

8 5 5 3 2 5

9 2 2 3 2 2

10 2 3 2 1 2

11 3 2 2 1 1

12 3 3 5 1 1

13 1 1 0 0 1

14 3 3 1 0 0

15 1 1 2 0 0

16 1 1 0 0 0

18 0 0 1 0 0

21 0 0 1 0 0

23 2 2 1 0 0

25 0 0 1 0 0

34 1 1 1 0 0

46 1 0 0 0 0

47 0 1 0 0 0

58 0 0 1 0 0

8� J Biol Methods | 2017 | Vol. 4(1) | e68
POL Scientific

Article

Table 4. Tabular format of the data plotted in Figure 4.

Cluster size Aggregate Centroid Length sorted centroid

2 258 258 268

3 79 77 68

4 37 38 37

5 20 20 16

6 1 1 9

7 4 4 1

8 5 5 5

9 2 2 2

10 2 3 4

11 3 2 2

12 3 3 5

13 1 1 2

14 3 3 1

15 1 1 1

16 1 1 1

17 0 0 1

19 0 0 1

23 2 2 1

27 0 0 1

34 1 1 1

46 1 0 0

47 0 1 0

In conclusion, aggregating randomly sorted centroid-linkage clus-
tering results into a single distribution mitigates the consequences of
input-order dependence in centroid-linkage clustering. The process
described here primarily uses disk storage instead of RAM, which
can have the consequences of long run times and requiring a large
amount of available disk space. However, these consequences may
be acceptable to researchers using a dataset that is too large for the
distance matrices of agglomerative clustering methods. Centroid-link-
age circumvents the need for constructing large distance matrices at
the cost of input-order dependence. Methods exist to correct for this
input-order dependence, such as presorting input sequences by length,

unique sequence abundance, or combination of the two. While these
methods may improve on the results of a single randomly sorted input
order, they still represent a single, and to some degree, arbitrary input
order. By aggregating the results of many randomly sorted iterations
of centroid-linkage, the final result will not be dependent on any single
input order. This method provides an alternative to the results from
presorted centroid-linkage clustering.

Acknowledgments
This work was supported by the NASA Astrobiology Institute at

Arizona State University (Follow the Elements; NAI5-0018).

References
1.	 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al.

(2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
doi: 10.1093/bioinformatics/btm404. PMID: 17846036

2.	 Gronau I, Moran S (2007) Optimal implementations of UPGMA and other
common clustering algorithms. Inform Process Lett 104: 205–210.

3.	 Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2008) The Ribosomal
Database Project: improved alignments and new tools for rRNA analysis.
Nucleic Acids Res 37: doi: 10.1093/nar/gkn879. PMID: 19004872

4.	 Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles
in the rare biosphere through improved OTU clustering. Environ Microbiol
12: 1889-1898. doi: 10.1111/j.1462-2920.2010.02193.x. PMID: 20236171

5.	 Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26: 2460-2461. doi: 10.1093/bioinformatics/btq461. PMID:
20709691

6.	 Kellom M, Raymond J (2016) Using Dendritic Heat Maps to Simultaneously
Display Genotype Divergence with Phenotype Divergence. PLoS One 11: doi:
10.1371/journal.pone.0161292. PMID: 27536963

7.	 Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the
next-generation sequencing data. Bioinformatics 28: 3150-3152. doi: 10.1093/
bioinformatics/bts565. PMID: 23060610

8.	 Ghodsi M, Liu B, Pop M (2011) DNACLUST: accurate and efficient clustering
of phylogenetic marker genes. BMC Bioinformatics 12: 271. doi: 10.1186/1471-
2105-12-271. PMID: 21718538

Supplementary information
File S1. Annotated Perl script.
Supplementary information of this article can be found online at
http://www.jbmethods.org/jbm/rt/suppFiles/153.

